

PROVENCE

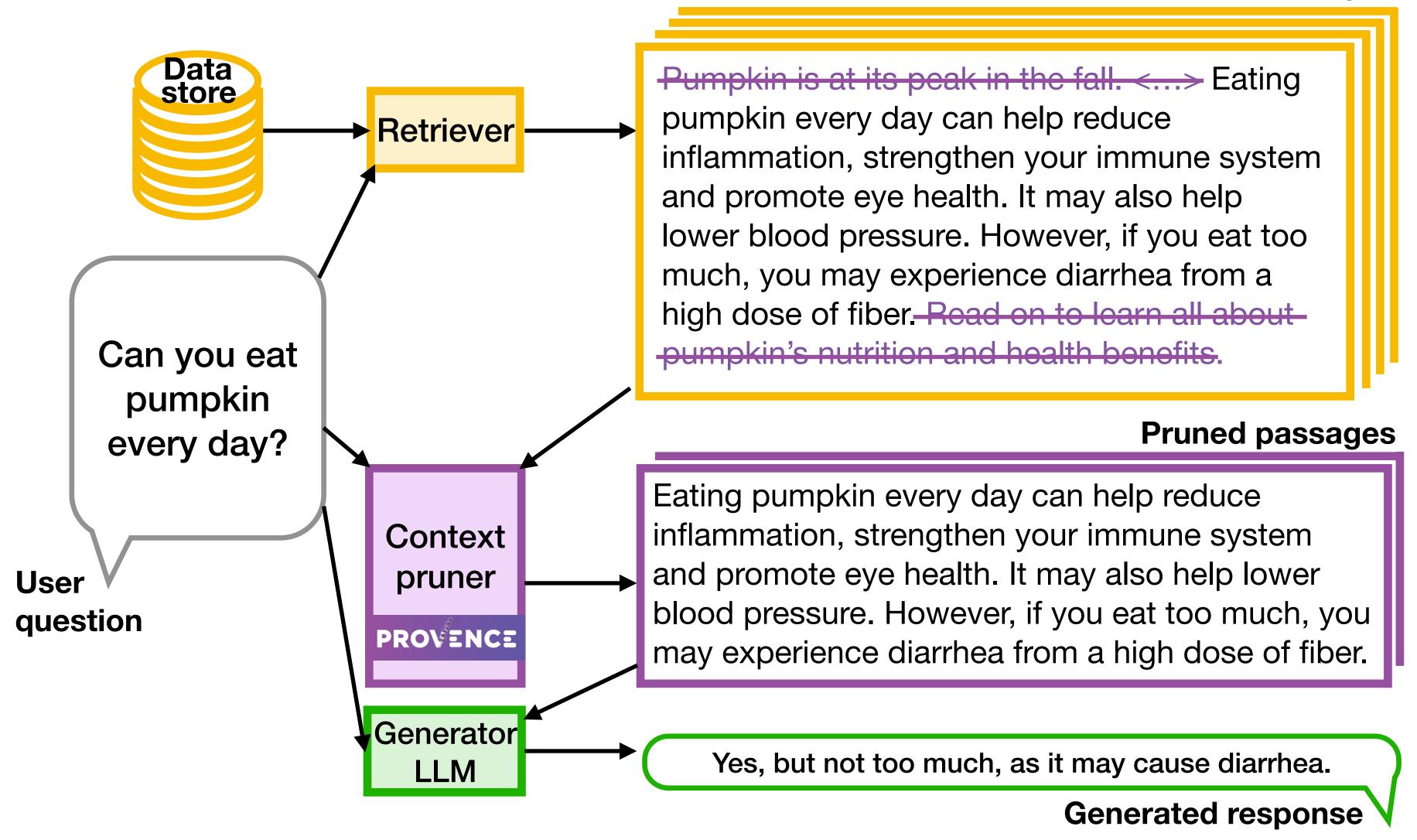
Provence: efficient and robust context pruning for retrieval-augmented generation

Nadezhda Chirkova, Thibault Formal, Vassilina Nikoulina, Stéphane Clinchant

ICLR'25

PROVENCE Pruning and Reranking Of retrieVEd relevaNt ContExts

Retrieved passages



Provence removes sentences that are irrelevant to the user question

Advantages: Generation speed up + Reduce propagation of irrelevant information

Existing context pruning approaches

		adaptability			eiency	robustness	
Approach	Query- dep.	Granularity	Output	Type	Base arch.	Multi- domain testing	Model re- lease
Selective Context	No	token-level	% of tokens	extr.	Llama-7B / GPT2	Yes	Yes
LLMLingua	No	token-level	% of tokens	extr.	Alpaca-7B / GPT2	Yes	Yes
LongLLMLingua	Yes	token-level	% of tokens	extr.	Llama-2-7B-chat	Yes	Yes
LLMLingua2	No	token-level	% of tokens	extr.	RoBERTa / mBERT	Yes	Yes
RECOMP extr.	Yes	sentlevel	k sentences	extr.	BERT	No	Yes
RECOMP abstr.	Yes	sentlevel	$\geqslant 0$ sentences	abstr.	T5-L	No	Yes
FilCo	Yes	sentlevel	1 sentence	abstr.	T5-XL / Llama-2-7B	No	No
COMPACT	Yes	sentlevel	≥ 0 sentences	abstr.	Mistral-7B	No	Yes
Provence (ours)	Yes	sentlevel	≥ 0 sentences	extr.	DeBERTa	Yes	Yes

Violet: practical solution

Orange: less-practical solution

In Provence, we aim to train an *adaptable*, *efficient* and *robust* context pruner ready to be used **out-of-the-box** for any question answering domain and any LLM

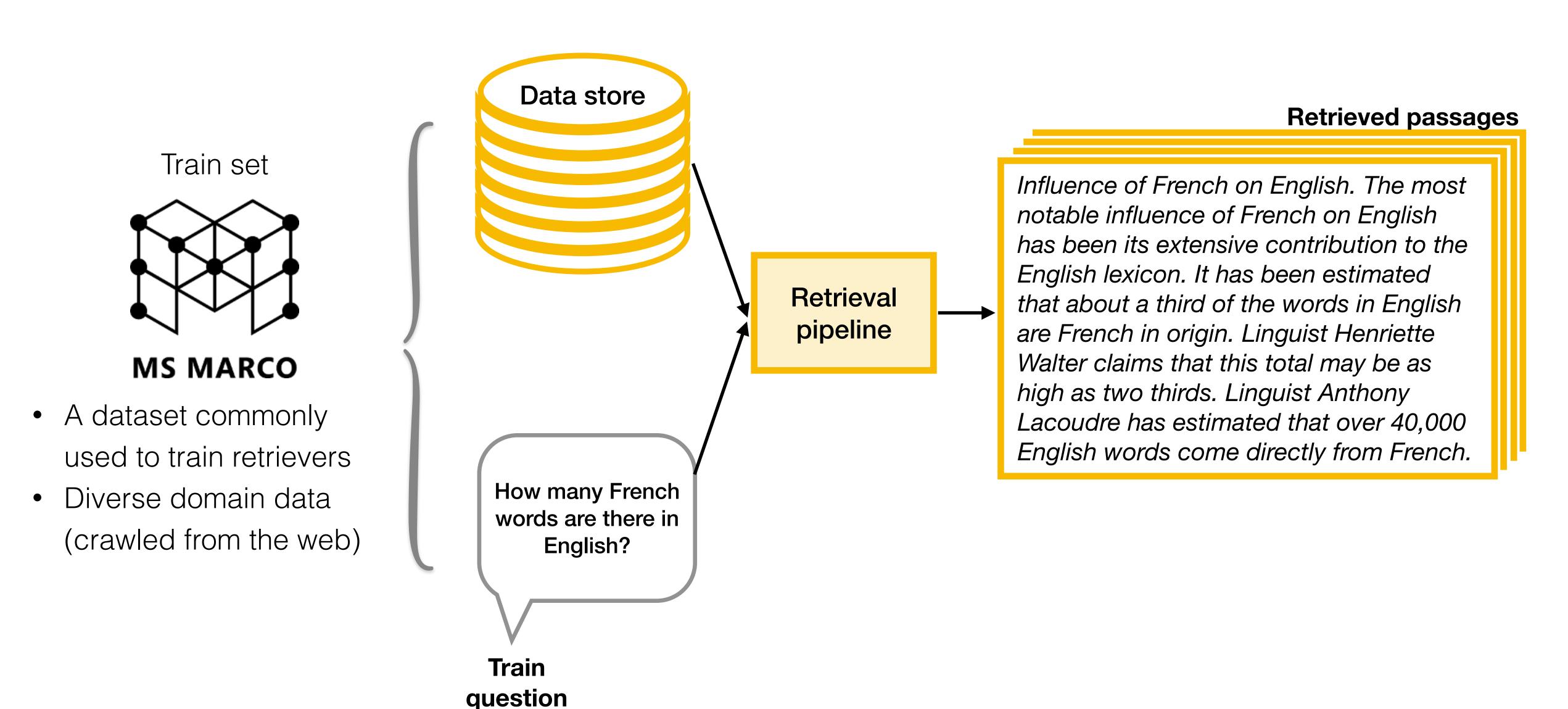
Provence training

Step 1: retrieve passages relevant to the train questions

Step 2: generate synthetic labels using a strong LLM

Step 3: train a compact context compressor using the synthetic labels

Step 1: retrieval for the train set



Step 2: synthetic labels generation

Retrieved passage

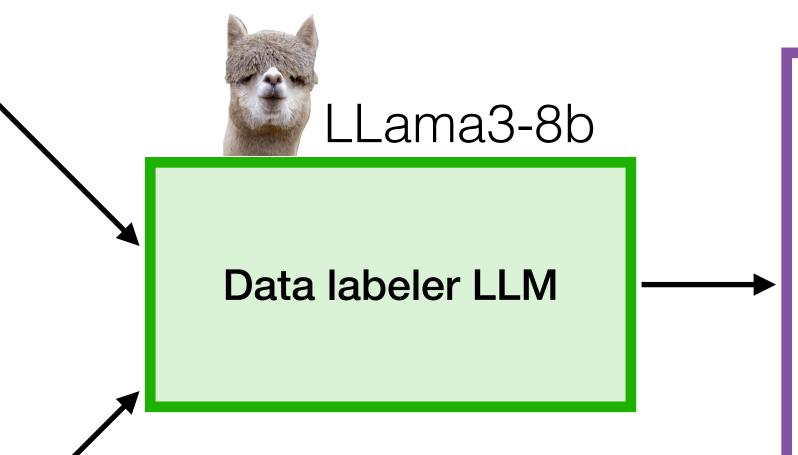
Influence of French on English. The most notable influence of French on English has been its extensive contribution to the English lexicon. It has been estimated that about a third of the words in English are French in origin. Linguist Henriette Walter claims that this total may be as high as two thirds. Linguist Anthony Lacoudre has estimated that over 40,000 English words come directly from French.

Train question

How many French

words are there in

English?

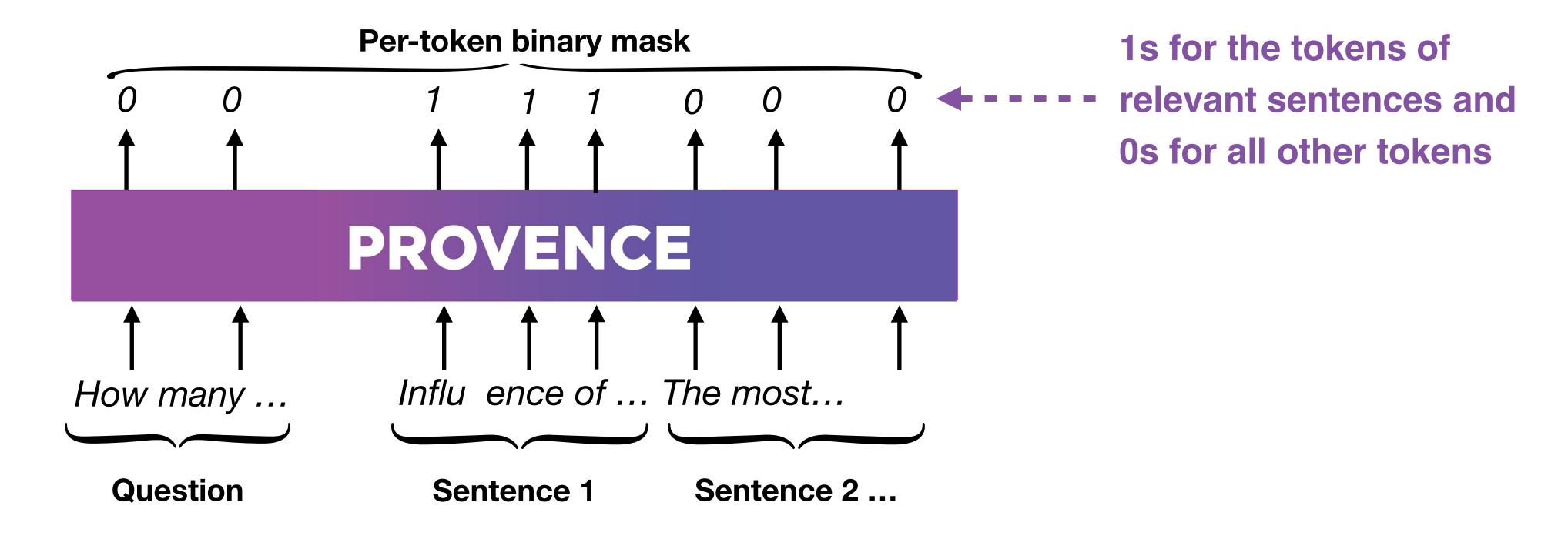


Labelled passage

Influence of French on English. The most notable influence of French on English has been its extensive contribution to the English lexicon. It has been estimated that about a third of the words in English are French in origin. Linguist Henriette Walter claims that this total may be as high as two thirds. Linguist Anthony Lacoudre has estimated that over 40,000 English words come directly from French.

Step 3: training Provence

We tune a DeBERTa model on a sequence labeling task:



Useful properties of Provence architecture (1)

- Provence encodes all the sentences and the question together,
 to better understand which sentences to keep
- In contrast, prior works process sentences independently one-by-one, losing their context and making errors in context pruning

Question: Can you eat pumpkin every day?

Retrieved context:

Pumpkin is at its peak in the fall. Eating pumpkin every day can help reduce inflammation, strengthen your immune system and promote eye health. It may also help lower blood pressure. However, if you eat too much, you may experience diarrhea from a high dose of fiber. Read on to learn all about pumpkin's nutrition and health benefits.

These sentences are unclear without the preceding sentences, i.e. that it is about pumpkin

Provence encodes all sentences and the question together, to better understand which sentences to keep

Useful properties of Provence architecture (2)

- Provence dynamically determines how many sentences to keep for each question-context pair
- In contrast, prior works select a fixed number of sentences

Context:

Pumpkin is at its peak in the fall. Eating pumpkin every day can help reduce inflammation, strengthen your immune system and promote eye health. It may also help lower blood pressure. However, if you eat too much, you may experience diarrhea from a high dose of fiber. Read on to learn all about pumpkin's nutrition and health benefits.

Possible questions: # relevant sentences: Can you eat pumpkin every day? When is the pumpkin season? Trelevant sentences 1 relevant sentences 1 relevant sentences O relevant sentences

Provence automatically detects how many sentences are relevant

Useful properties of Provence architecture (3)

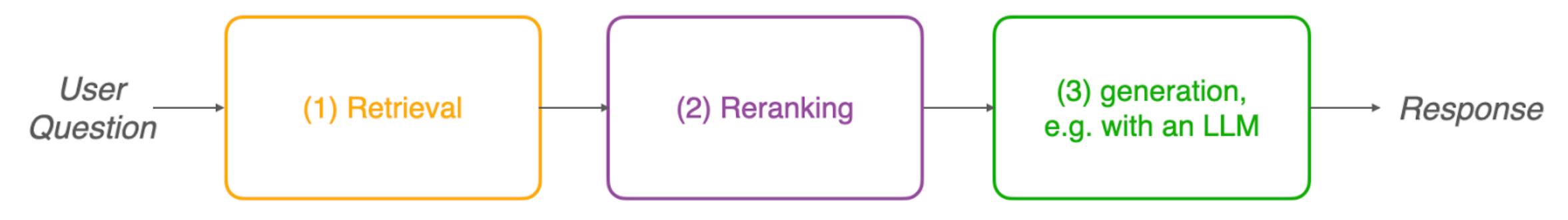
- Provence is efficient, due to the extractive task formulation and compact base model
- In contrast, prior approaches often rely on billion-size models or generate the pruned context autoregressively

Useful properties of Provence architecture (3)

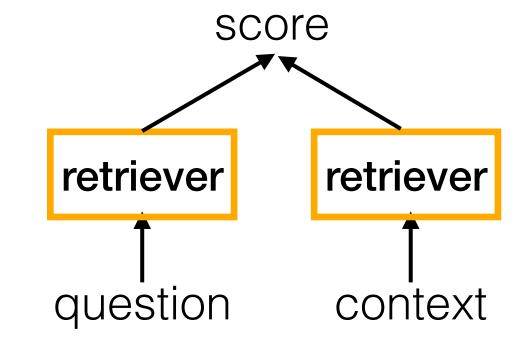
- Provence is efficient, due to the extractive task formulation and compact base model
- In contrast, prior approaches often rely on billion-size models or generate the pruned context autoregressively

Let's make Provence even more efficient, i.e. almost zero-cost!

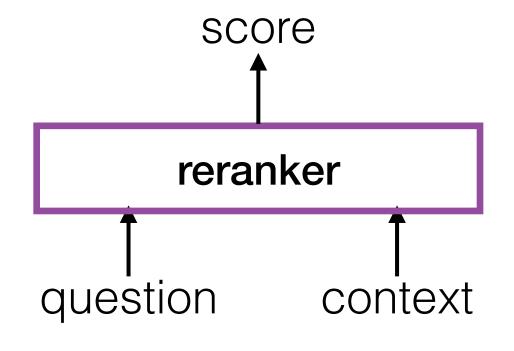
A more detailed RAG pipeline



- fast, but less precise first stage of retrieval
- slower, but more precise second stage of retrieval



at inference, only need to encode a query → fast (contexts are pre-encoded)

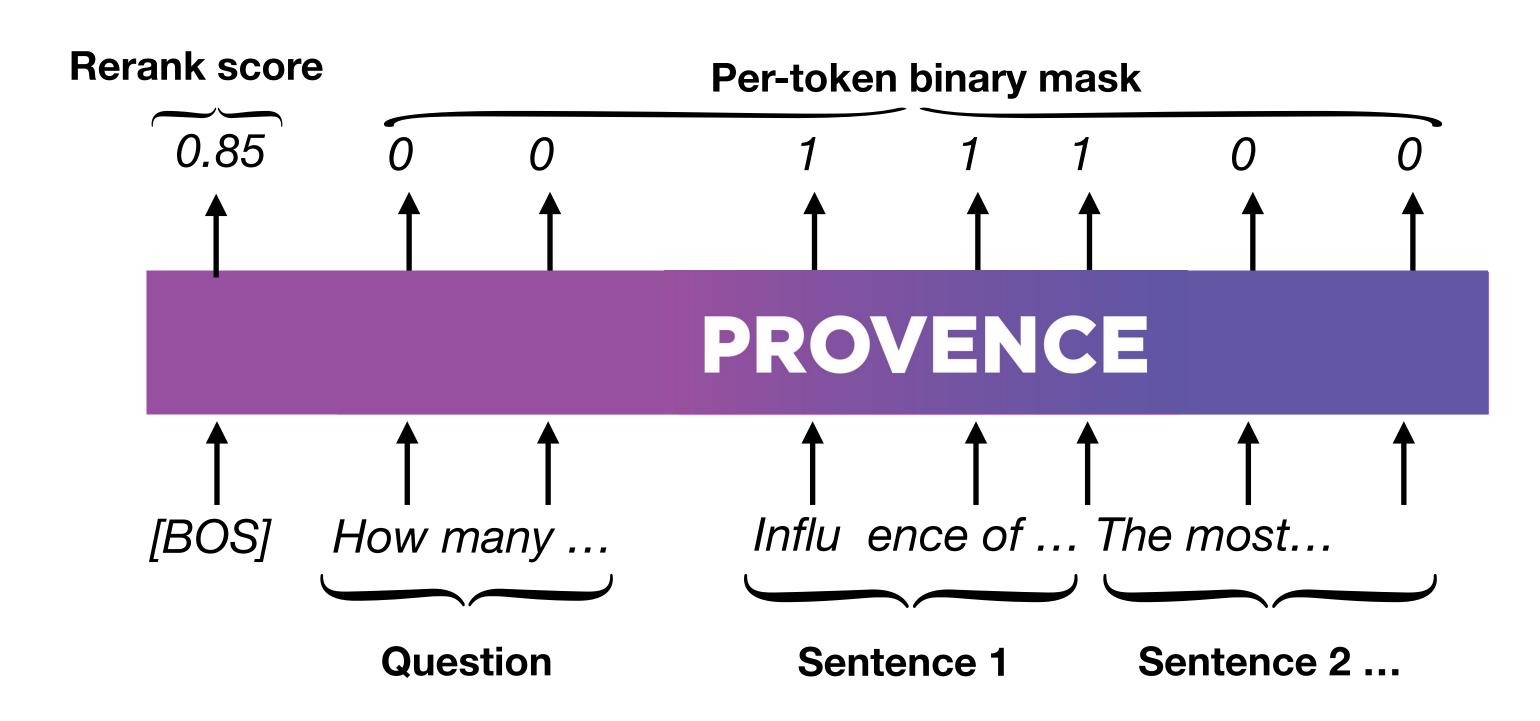


at inference, need to encode each context with a query → slower

Same architecture as Provence!

We propose to augment a reranker, an already existing part of the RAG pipeline, with context pruning capabilities!

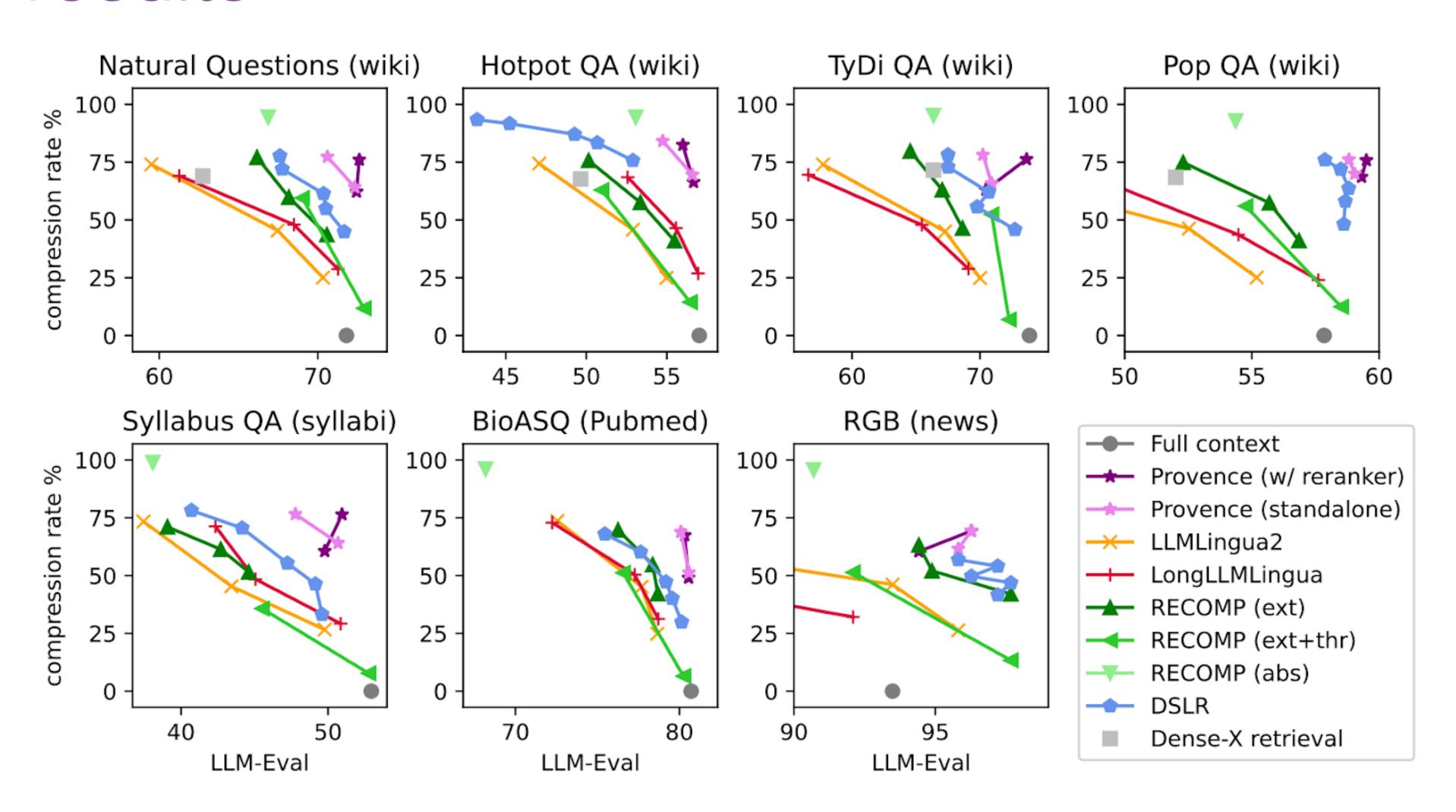
Context pruning & reranking in a single model



- In addition to the reranking head, we add a second prediction head for context pruning
- Start from a pretrained reranker and tune it with a two-task objective
- Augmenting reranker with context pruning does not hurt reranking performance!

Since we are reusing the forward pass of reranking, context pruning comes at almost zero cost!

Main results



Provence consistently outperforms other approaches, in all domains, and stays on the Pareto front. **Provence** is the only model that performs context pruning with little-to-no drop in performance

PROVENCE Pruning and Reranking Of retrieVEd relevaNt ContExts

- An approach for training an adaptable, robust, and efficient (zero-cost!) context pruner, ready to be used out-of-the-box for any QA domain and any LLM
- Key ingredients of the approach:
 - formulating context pruning as sequence labeling
 - unifying context pruning and reranking in a single model
 - training on diverse data
- Provence enables state-of-the-art context pruning, with little-to-no performance drop across various domains

https://huggingface.co/naver/provence-reranker-debertav3-v1 Model:

https://huggingface.co/blog/nadiinchi/provence Blog:

https://github.com/naver/bergen/tree/main/scripts/provence Code: