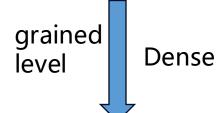


VideoGrain Modulating Space-Time Attention for Multi-Grained Video Editing

Xiangpeng Yang¹, Linchao Zhu², Hehe Fan², Yi Yang²
¹University of Technology Sydney, ReLER Lab; CCAI, ²Zhejiang University

VideoGrain – Task Definition



part level: adding new objects

part level: modifying exisiting attributes

- Class Level: Editing objects within the same class
- Instance Level: Editing each individual instance to distinct object
- Part Level: Applying part-level edit to specific elements of individual instances.

Multi-Grained Video Editing

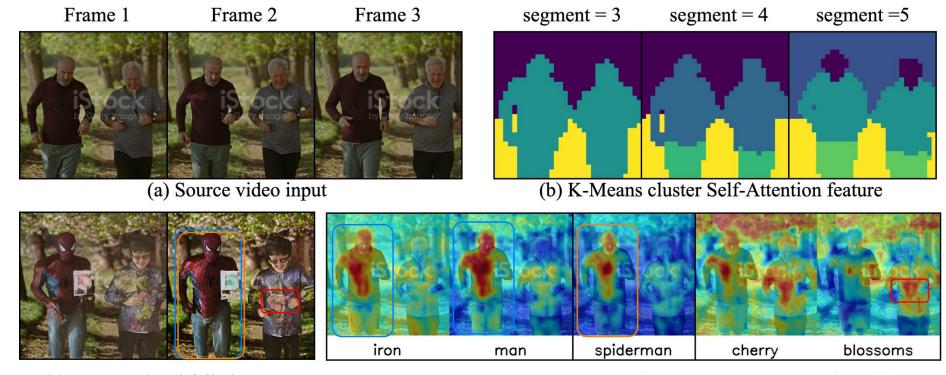
VideoGrain

Previous

Performance

SOTA

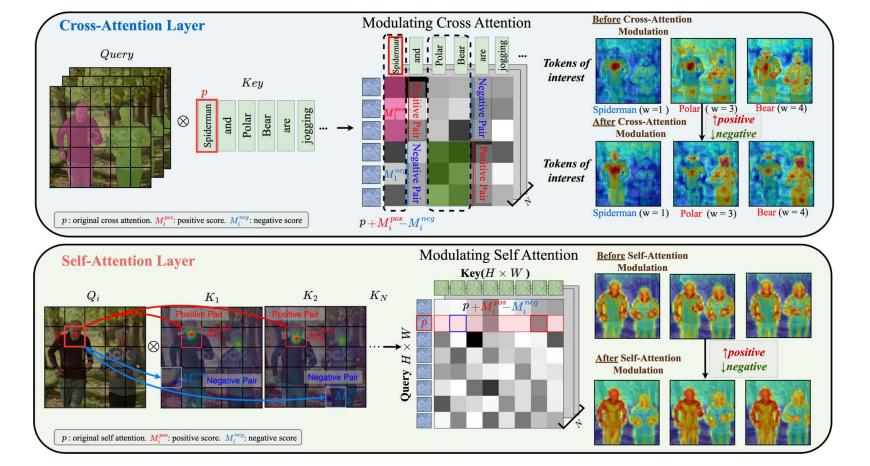
Objective: Multi-grained video Editing (Class/Instance/part level)


Instance Level Part Level Class Level source video class level part level instance level **TokenFlow** GroundVideo **DMT** Pika

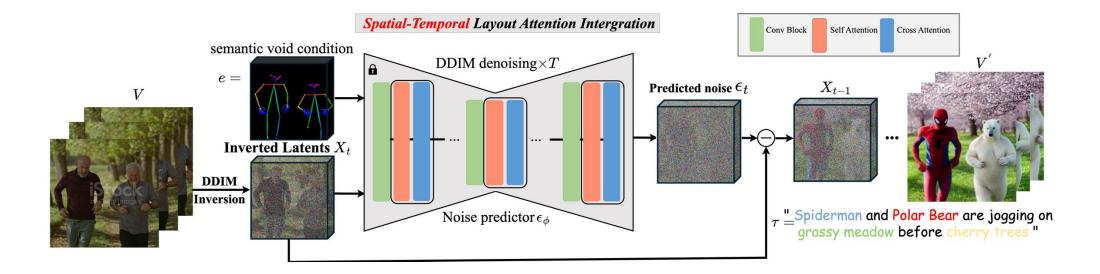
Challenges and Motivation

Challenges: Direct editing leads to failed edit and attention leakage. Reasons:

- Feature coupling: Diffusion models cannot distinguish between left and right instances. Increasing clusters only refines the layout but fails to separate instances.
- **Text-to-region control:** Editing fails due to **inaccurate cross-attention weights**. Proper editing should ensure accurate attention distribution across regions.

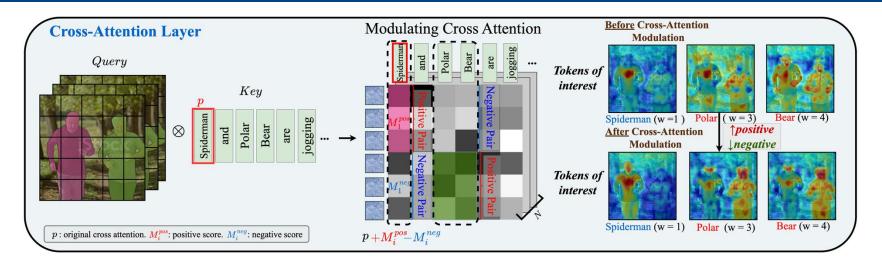

(c) Instance-level failed case (d) Cross-Attention Map: "An Iron Man and a Spiderman are jogging under cherry blossoms"

Framework


Unified increase positive, decrease negative manner:

- Text-to-region control: Each local prompt and its location as positive pairs, while the prompt and outside-location areas are negative pairs,
- Keep feature Separation: Enhance positive awareness within intra-regions, restrict negative interactions between inter-regions across frames.

Framework


- Modulated Attention
- Query-key condition map

$$A_i^{\text{self/cross}} = \text{softmax}(\frac{QK^\top + \lambda M^{\text{self/cross}}}{\sqrt{d}}),$$

$$M^{\text{self/cross}} = R_i \odot M_i^{\text{pos}} - (1 - R_i) \odot M_i^{\text{neg}},$$

Modulate Cross-Attention for Text-to-Region Control

Modulated Cross Attention

$$A_i^{\text{self/cross}} = \text{softmax}(\frac{QK^{\top} + \lambda M^{\text{self/cross}}}{\sqrt{d}}),$$

Cross-attn qk condition map

$$M^{\text{self/cross}} = R_i \odot M_i^{\text{pos}} - (1 - R_i) \odot M_i^{\text{neg}},$$

Positive/Negative value definition

$$\begin{split} M_i^{\text{pos}} &= \max(QK^\top) - QK^\top, \\ M_i^{\text{neg}} &= QK^\top - \min(QK^\top), \end{split}$$

Regularize cross condition map

$$R_i^{\text{cross}}[x,y] = \left\{ \begin{array}{ll} m_{i,k}, & \text{if } y \in \tau_k \\ 0, & \text{otherwise} \end{array} \right.,$$

Modulate Self-Attention to Keep Feature Separation

- Modulated self-attention
- Self-attn qk condition map
- Positive/Negative value definition
- Regularize self condition map

$$A_i^{\text{self/cross}} = \text{softmax}(\frac{QK^{\top} + \lambda M^{\text{self/cross}}}{\sqrt{d}}),$$
$$M^{\text{self/cross}} = R_i \odot M_i^{\text{pos}} - (1 - R_i) \odot M_i^{\text{neg}},$$

$$M_i^{\text{pos}} = \max(Q_i[K_1, \cdots, K_n]^{\top}) - Q_i[K_1, \cdots, K_n]^{\top}),$$

 $M_i^{\text{neg}} = Q_i[K_1, \cdots, K_n]^{\top} - \min(Q_i[K_1, \cdots, K_n]^{\top}).$

$$R_i^{\text{self}}[x,y] = \begin{cases} 0, \forall j \in [1:N], \text{if } m_{i,k}[x] \neq m_{j,k}[y] \\ 1, \text{otherwise} \end{cases}.$$

Qualitative Results

- **Solely edit** -> joint edit, background unchanged.
- Instance level: human/animal instances, complex motion and multi-region editing
- Part Level: adding new object, modify part-level attribute.

part-level adding sunglasses

part-level color change

VideoGrain – Comparison with SOTA

part level: 索尔带着墨镜在夜晚挥舞着红色的拳击手套

human instances: 钢铁侠和一个猴子在雪地上樱花树下骑车

animal instances: 一个熊猫和一个贵宾犬在星月夜的草地上玩耍

Quantitative result



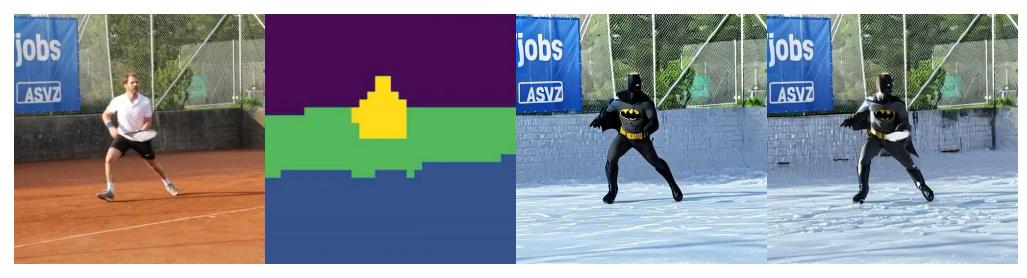
Quantitative comparison

		Automatic Metric Human			man Evaluatio	n Evaluation	
Method	CLIP-F↑	CLIP-T↑	Warp-Err↓	Q-edit ↑	Edit-Acc ↑	Temp-Con ↑	Overall ↑
FateZero	95.75	33.78	3.08	10.96	59.8	78.6	59.6
ControlVideo	97.71	34.41	4.73	7.27	53.2	50.0	43.6
TokenFlow	96.48	34.59	2.82	12.28	45.4	50.4	39.8
Ground-A-Video	95.17	35.09	4.43	7.92	69.0	72.0	63.2
DMT	96.34	34.09	2.05	16.63	58.7	79.4	64.5
VideoGrain(ours)	98.63	36.56	1.42	25.75	88.4	85.0	83.0

Table 1: Quantitative comparison of automatic metrics and human evaluation. The best results are **bolded**.

	Time(min) ↓	Memory (GB) ↓	RAM (GB) ↓
FateZero	8.68	27.35	144.22
ControlVideo	4.41	16.15	7.03
TokenFlow	4.56	17.84	5.35
Ground-A-Video	5.81	17.31	9.96
DMT	5.79	27.88	8.12
VideoGrain	3.83	15.94	4.42

Table 2: Efficiency comparison.

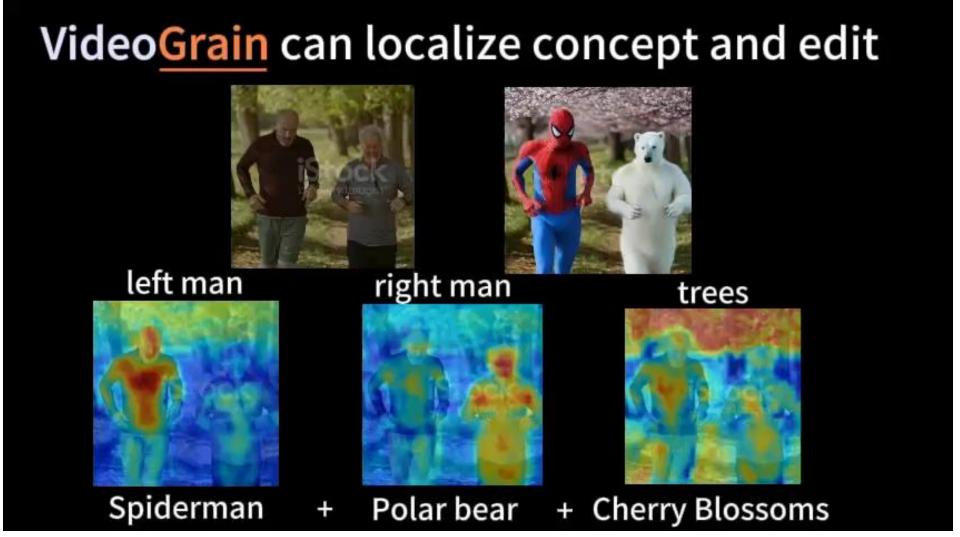

Figure 7: Attention weight distribution.

Ablation study

Temporal focus

Wo-SAM-Track Masks

Ablation study – Other method + mask


Source prompt: red man and gray man are jogging under green trees Edit prompt: Spider Man and Polar Bear are jogging under cherry blossoms VideoP2P setting: Attention Replace 3 subject words + Attention Reweight (Spider man: 4, polar bear: 4,cherry blossoms:2)

Localize concept and edit

Localize concept and edit:

VideoGrain can localize concept and edit multi-concept in one denoising process.

VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing, ICLR 2025

Thanks

XIANGPENG YANG ReLER