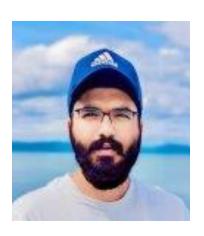
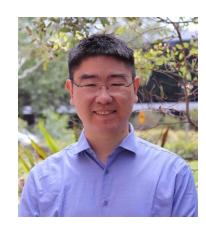


Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors




Haiyu Wu Uni. Notre Dame

Jaskirat Singh ANU

Sicong Tian Indiana University

Liang Zheng ANU

Kevin W. Bowyer Uni. Notre Dame

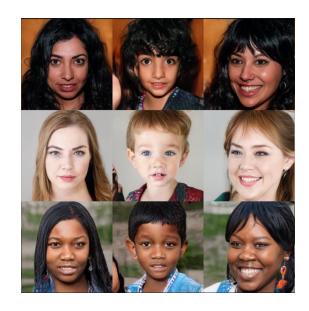
Outline

- Background
- Proposed algorithm: Vec2Face
- Dataset assembling
- Performance and analysis

Background

Training set (real)

Model training


Test set (real)

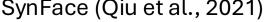
General Protection Regulation (GDPR)
California Consumer Privacy Act (CCPA)
Act on the Protection of Personal Information (AAPI)...

Challenges

Training set (syn.)

Model training

Test set (real)



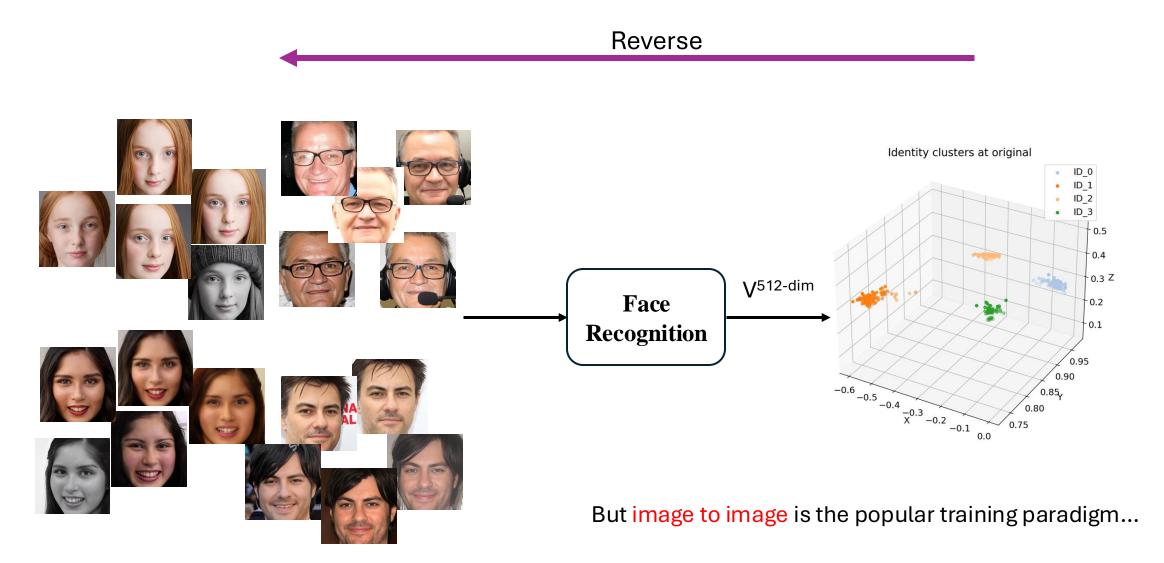
Realism – not much of an issue We have VAE, GAN, Diffusion...

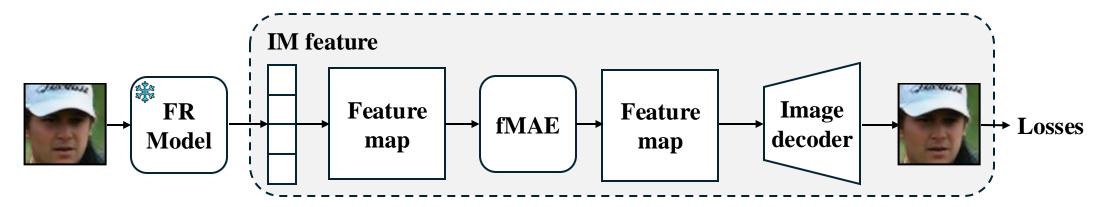
Large number of unique IDs / classes Large intra-class variation

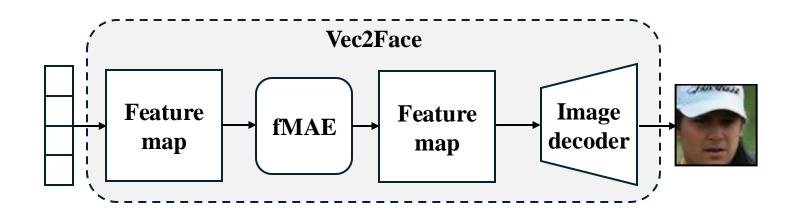
ID separability in synthetic faces

SynFace (Qiu et al., 2021)

ID2:


SFace (Boutros et al., 2022)


IDiff-Face (Boutros et al., 2023)


Intuition

Training

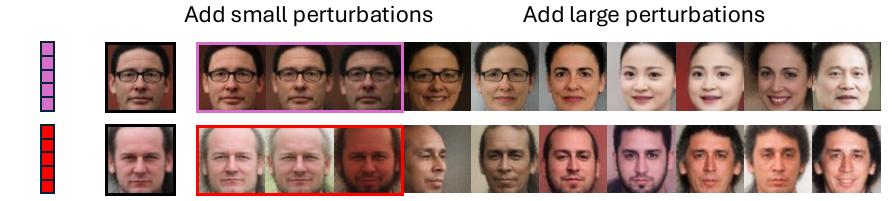
Inference

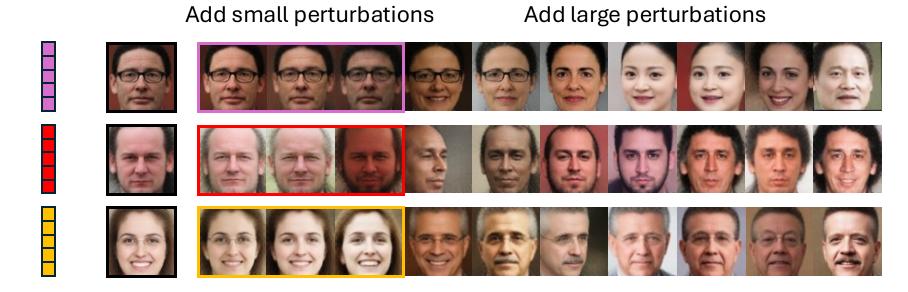
Wu et al., Vec2Face: Scaling face dataset generation with loosely constrained vectors. ICLR 2025

Properties

Add small perturbations

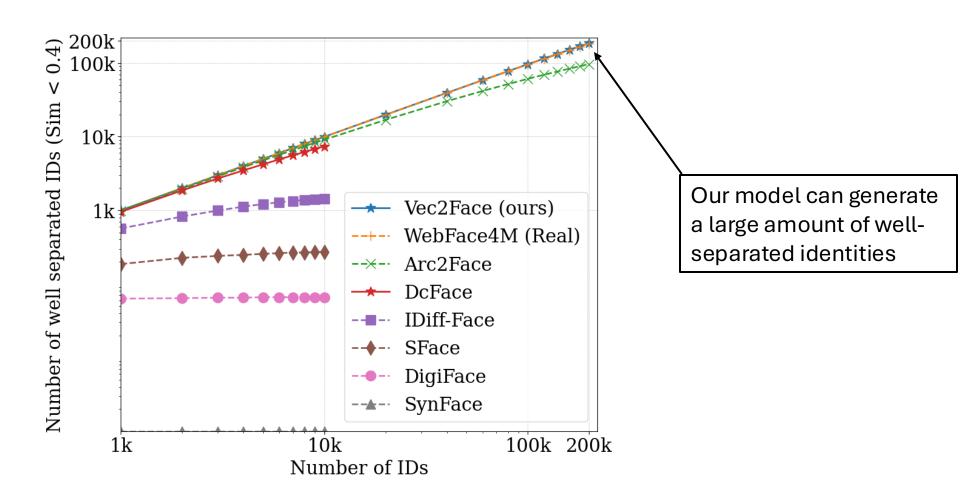
Add large perturbations



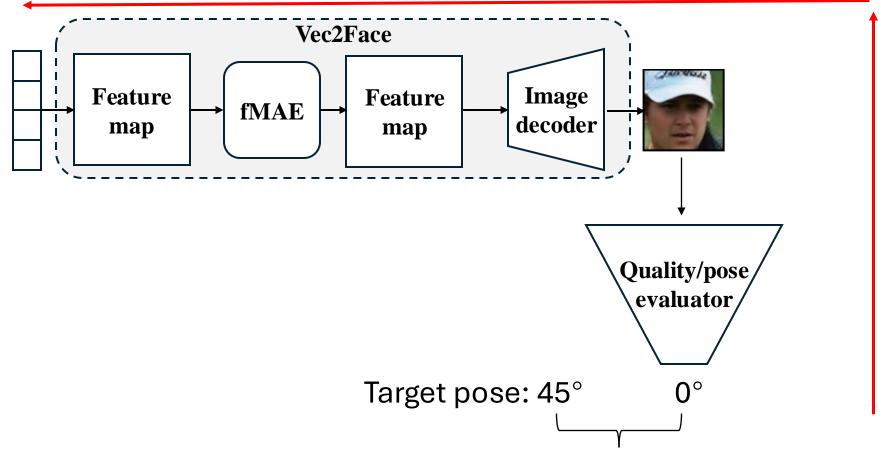


Properties

Properties

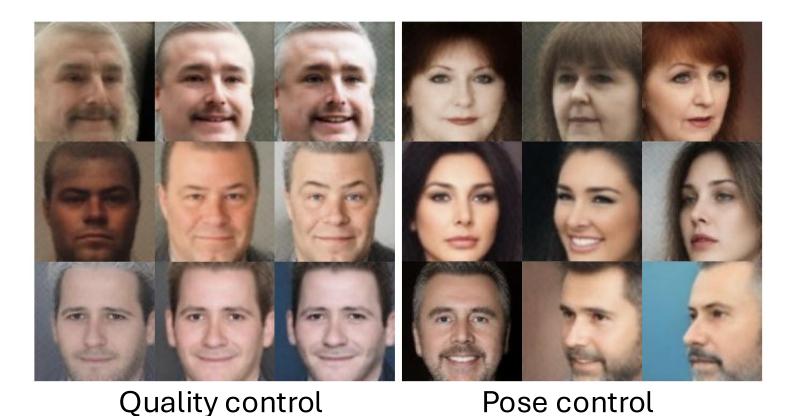


Well separated identities:


A vector creates a unique identity if its similarity to any other feature is less than a threshold.

Wu et al., Vec2Face: Scaling face dataset generation with loosely constrained vectors. ICLR 2025

Identity separability


Attribute control with Vec2Face

Compute difference and back propagate

Wu et al., Vec2Face: Scaling face dataset generation with loosely constrained vectors. ICLR 2025

Attribute control with Vec2Face

Training sets	# images	LFW	CFP-FP	CPLFW	AgeDB	CALFW	Avg.
IDiff-Face (Boutros et al., 2023a) [†]	0.5M	98.00	85.47	80.45	86.43	90.65	88.20
DCFace (Kim et al., 2023) [†]	0.5M	98.55	85.33	82.62	89.70	91.60	89.56
Arc2Face (Papantoniou et al., 2024)†	0.5M	98.81	91.87	85.16	90.18	92.63	91.73
DigiFace (Bae et al., 2023)*	1 M	95.40	87.40	78.87	76.97	78.62	83.45
SynFace (Qiu et al., 2021) [♦]	0.5M	91.93	75.03	70.43	61.63	74.73	74.75
SFace (Boutros et al., 2022a)	0.6M	91.87	73.86	73.20	71.68	77.93	77.71
IDnet (Kolf et al., 2023)	0.5M	92.58	75.40	74.25	63.88	79.90	79.13
ExFaceGAN (Boutros et al., 2023b)	0.5M	93.50	73.84	71.60	78.92	82.98	80.17
SFace2 (Boutros et al., 2024)	0.6M	95.60	77.11	74.60	77.37	83.40	81.62
Langevin-Disco (Geissbühler et al., 2024)	0.6M	96.60	73.89	74.77	80.70	87.77	82.75
HSFace10K (Ours) [♦]	0.5M	98.87	88.97	85.47	93.12	93.57	92.00
CASIA-WebFace (Real)	0.49M	99.38	96.91	89.78	94.50	93.35	94.79

Accuracy on other test sets

Datasets	Hadrian	Eclipse	SLLFW	DoppelVer
HSFace10K	69.47	64.55	92.87	86.91
HSFace20K	75.22	67.55	94.37	88.90
HSFace100K	80.00	70.35	95.58	90.39
HSFace200K	79.85	71.12	95.70	89.86
HSFace300K	81.55	71.35	95.95	90.49
CASIA-WebFace	77.82	68.52	96.95	95.11

Table 6: Comparing a real dataset with HSFaces on other tasks. Hadrian, Eclipse, SLLFW, and DoppelVer emphasize facial hair variation, face exposure difference, similar-looking, and doppelganger, respectively.

Datasets	# of images	IJBB	IJBC
DCFace	0.5M	66.47	69.92
HSFace10K	0.5M	83.82	86.96
CASIA-WebFace	0.5M	78.71	83.44
HSFace100K	5M	86.16	89.73
WebFace4M	4M	95.07	96.63

Table 1: TPR@FPR=1e-4 on IJBB and IJBC datasets. The models are trained with SE-IResNet50.

Identity leakage

5M randomly sampled IDs	0.5	0.7
WebFace4M	0	0
CASIA-WebFace	0	0

Table 1: Identity leakage experiment between 5M randomly sampled identities and real identities. According to Web-Face4M Zhu et al. (2023), identity pairs with similarity larger than 0.7 can be regarded as the same identity. We report the percentage of identity pairs falling in this range.

Takeaways

- Our model can generate large number of well-separated IDs w/o ID leakage.
- Our algorithm can accurately control the facial attributes.
- The generated training sets result in better performance than a real training dataset on various tasks.

Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors

