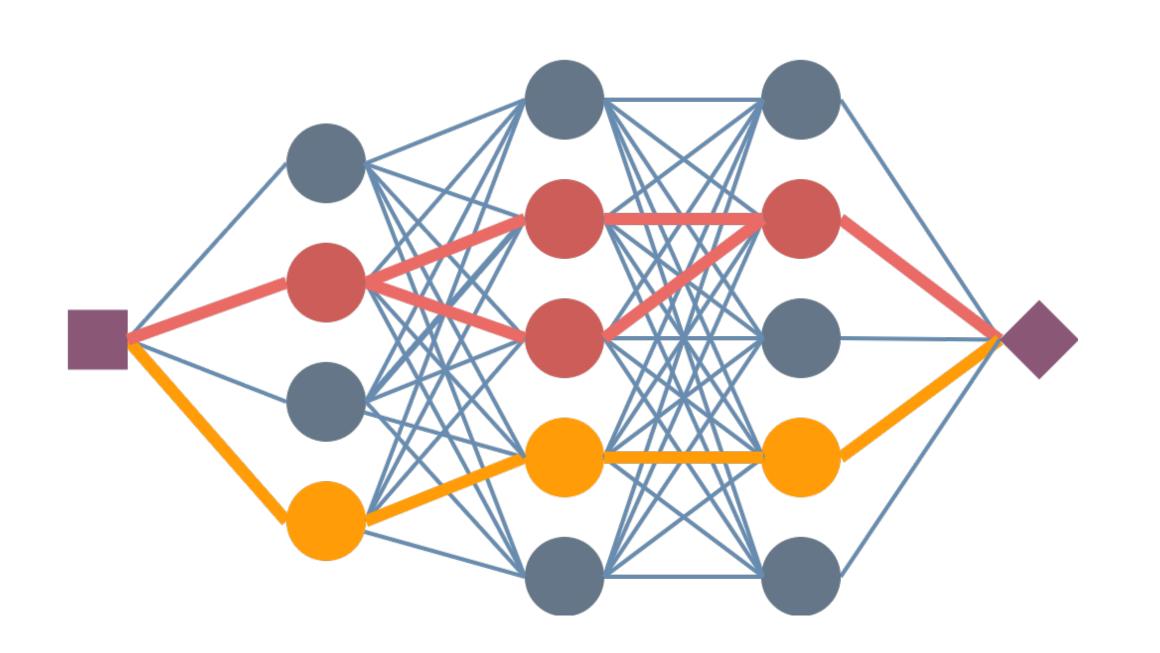
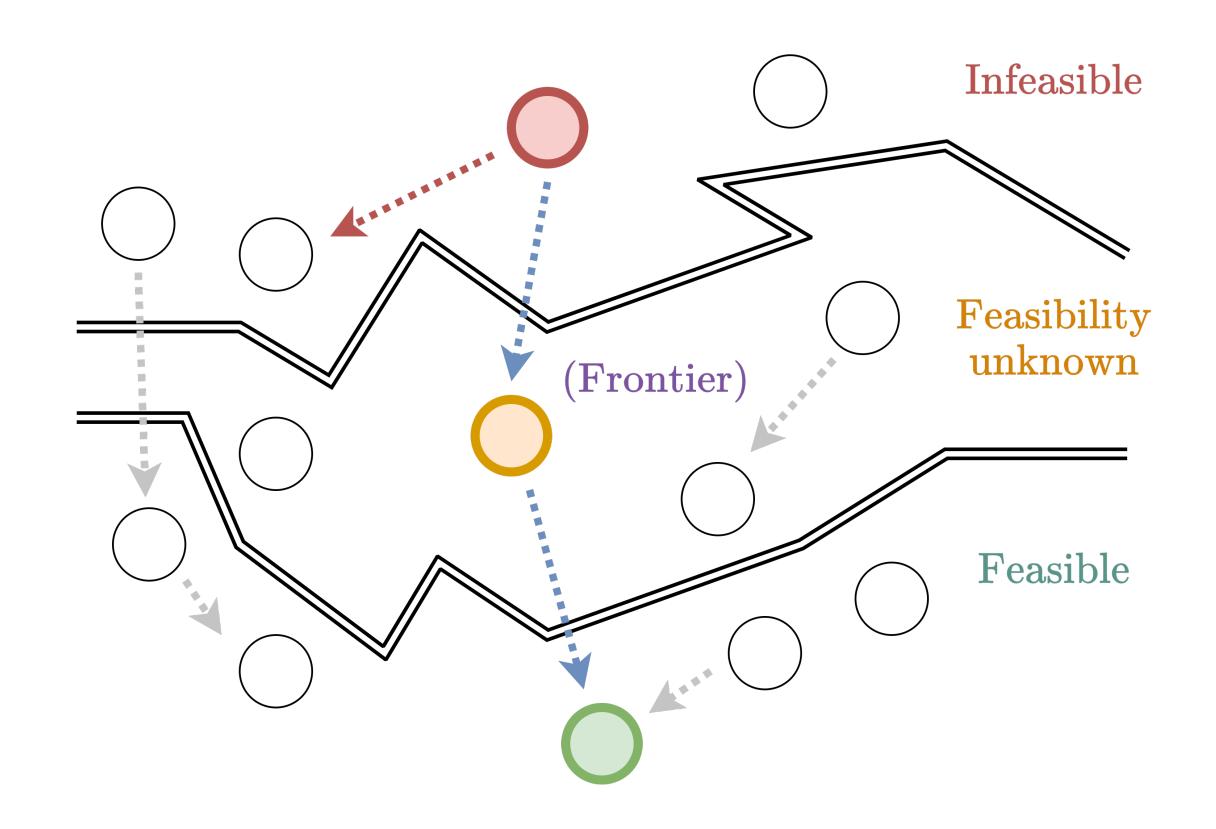

The Computational Complexity of Circuit Discovery for Inner Interpretability


Federico Adolfi, Martina Vilas, Todd Wareham

Circuit Discovery


- Many applications of neural networks
 depend on the feasibility of inner
 interpretability through circuit discovery.
- Circuit hypothesis: networks might implement their capabilities via small circuits.
- This calls for empirical and theoretical explorations of viable interpretability queries and procedures to answer them.

Challenges and opportunities

- Automation and scalability
- Global/local faithfulness

- Theoretical exploration of viable interpretability queries is lacking
- Breakdown of scalability: computational complexity
- Intrinsic complexity of interpretability queries is unknown

Contributions

- Conceptualization of circuit queries in terms of affordances for description, explanation, prediction and control
- Formalization of a comprehensive set of queries and a formal framework for analysis
- Complexity-theoretic results for query variants, parameterizations, relaxations and approximation schemes in MLPs
- (Find other contributions in the paper)

Generating interpretability queries

Problem 0. PROBLEMNAME (PN)

Input: A multi-layer perceptron \mathcal{M} , Coverage IN, Size IN.

Output: A Property circuit \mathcal{C} of \mathcal{M} , SizeOUT, s.t. CoverageOUT $\mathcal{C}(\mathbf{x}) = \mathcal{M}(\mathbf{x})$, Suffix.

Coverage

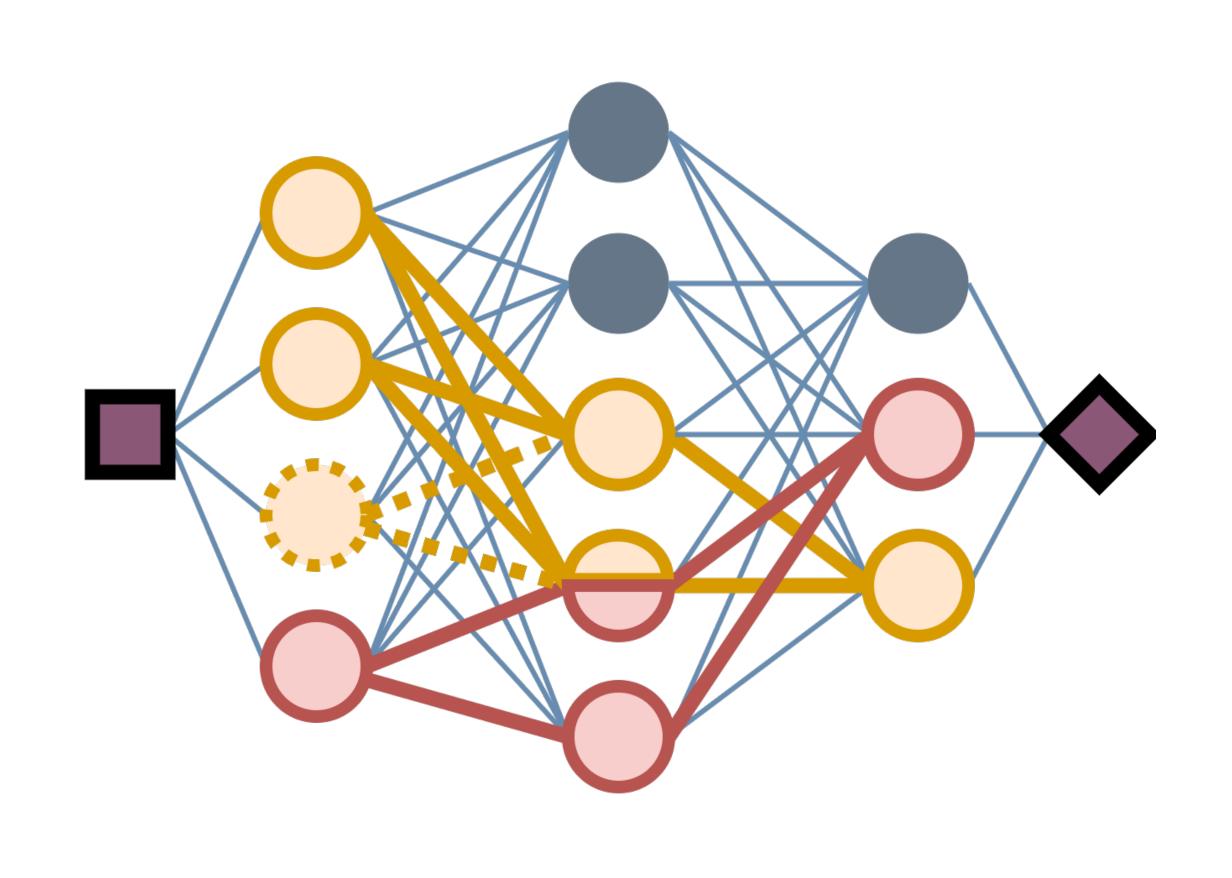
- Size
- Local/Global Minimality
- Necessity
- Sufficiency

Table 2: Generating query variants from problem templates.

Description	Query variants						
variables	Local			Global			
	Bounded	Unbounded	Optimal	Bounded	Unbounded	Optimal	
CoverageIN	an input x	an input x	an input x	66 99	66 99	66 99	
CoverageOUT	66 99	66 99	66 99	$\forall_{\mathbf{x}}$	$\forall_{\mathbf{x}}$	$orall_{\mathbf{x}}$	
SizeIN	int. $u \leq \mathcal{M} $	66 99	66 99	int. $u \leq \mathcal{M} $	66 99	66 99	
SizeOUT	size $ \mathcal{C} \leq u$	66 99	min. size	size $ \mathcal{C} \leq u$	66 99	min. size	
Property	minimal / ""	minimal / ""	66 99	minimal / ""	minimal / ""	66 99	
Suffix	if it exists, otherwise ⊥	66 99	66 99	if it exists, otherwise ⊥	66 99	66 99	

Circuits for explanation and control

Table 1: Circuit affordances for description, explanation, prediction, and control.


Circuit	Affordance			
	Description / Explanation	Prediction / Control		
Sufficient Circuit	Which neurons suffice in isolation to cause a behavior? <i>Minimum:</i> shortest description.	Inference in isolation. <i>Minimal:</i> ablating any neuron breaks behavior of the circuit.		
Quasi-minimal Sufficient Circuit	Which neurons suffice in isolation to cause a behavior and which is a breaking point?	Ablating the breaking point breaks behavior of the circuit.		
Necessary Circuit	Which neurons are part of all circuits for a behavior? Key subcomputations?	Ablating the neurons breaks behavior of any sufficient circuit in the network.		
Circuit Ablation & Clamping	Which neurons are necessary in the current configuration of the network?	Ablating/Clamping the neurons breaks behavior of the network.		
Circuit Robustness	How much redundancy supports a behavior? Resilience to perturbations.	Ablating any set of neurons of size below threshold does not break behavior.		
Patched Circuit	Which neurons drive a behavior in a given input context, i.e., are control nodes?	Patching neurons changes network behavior for inputs of interest. Steering; Editing.		
Quasi-minimal Patched Circuit	Which neurons can drive a behavior in a given input context and which neuron is a breaking point?	Patching neurons causes target behavior for inputs of interest; Unpatching breaking point breaks target behavior.		
Gnostic Neurons	Which neurons respond preferentially to a certain concept?	Concept editing; guided synthesis.		

Circuits for explanation and control

Trivial SC Non-minimal SC Minimal SC Minimum/mal SC NC Quasi-minimal SC $(\bigcirc, \bigcirc, \bigcirc)$

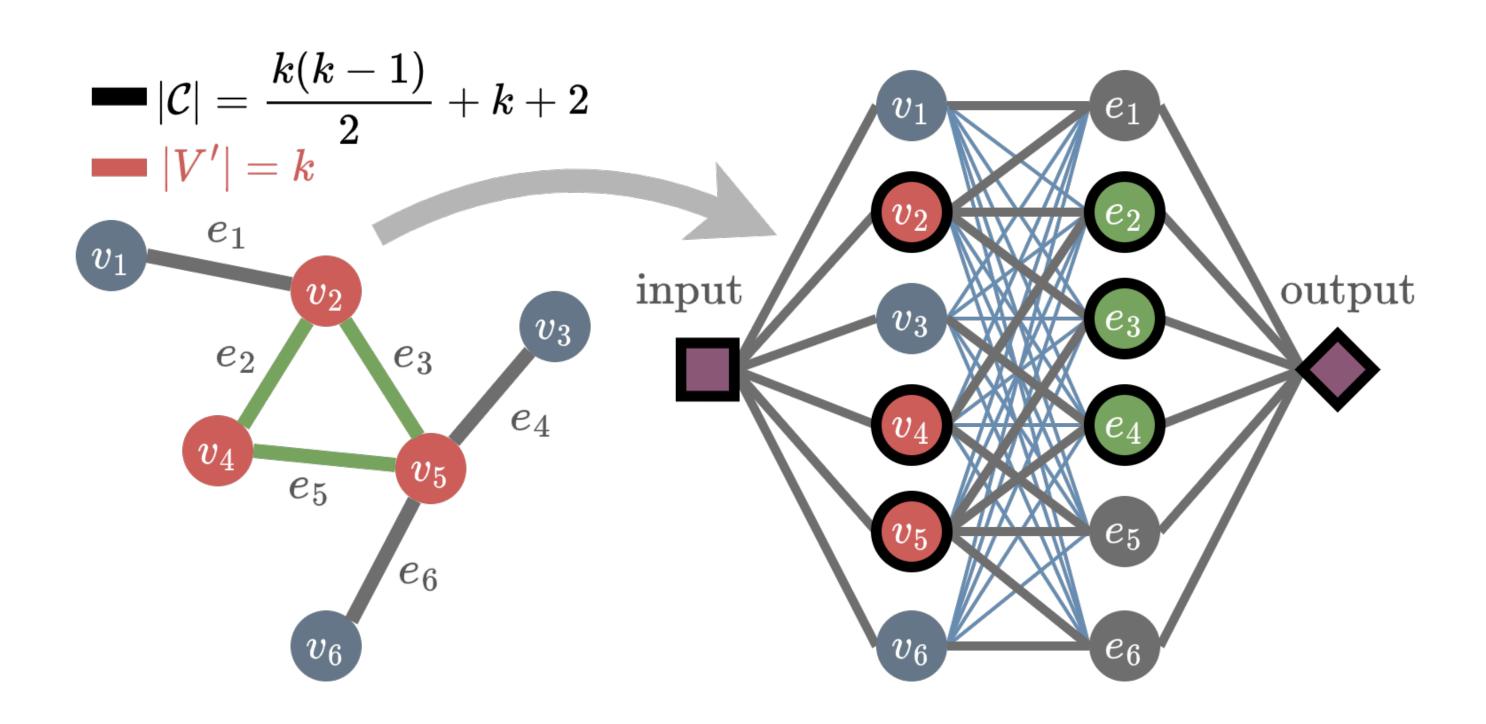
Query approximations, parameterizations, relaxations

- Approximation
 - Additive
 - Multiplicative
 - Probabilistic
- Relaxation
 - Quasi-minimality

Table 3: Model and circuit parameterizations.

Parameter	Model (given)	Circuit (requested)
Number of layers (depth)	\hat{L}	\hat{l}
Maximum layer width	\hat{L}_w	\hat{l}_w
Total number of units ²	$\hat{U} = \mathcal{M} \le \hat{L} \cdot \hat{L}_w$	$ \mathcal{C} = \hat{u}$
Number of input units	\hat{U}_I	\hat{u}_I
Number of output units	\hat{U}_{O}	\hat{u}_O
Maximum weight	\hat{W}	\hat{w}
Maximum bias	\hat{B}	\hat{b}

Problem 7. Unbounded Quasi-minimal Local Circuit Patching (UQLCP)

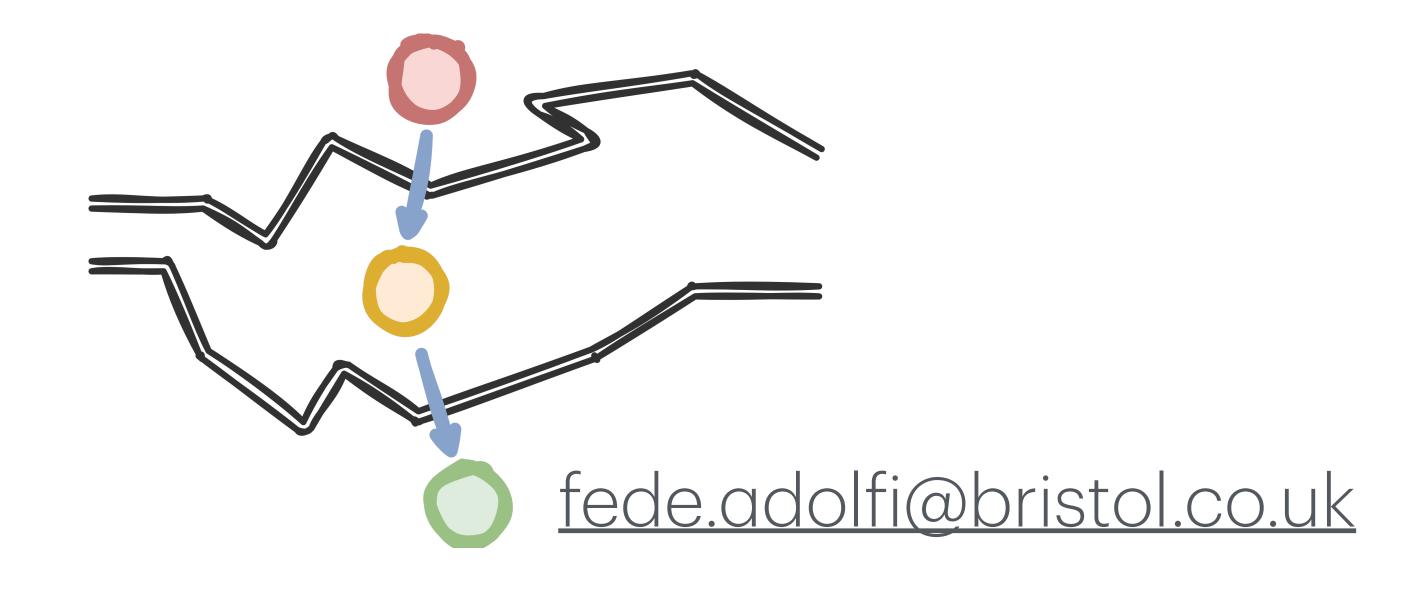

A multi-layer perceptron \mathcal{M} , an input vector y, and a set \mathcal{X} of input vectors.

Output: A subset \mathcal{C} in \mathcal{M} and a neuron $v \in \mathcal{C}$, such that for the \mathcal{M}^* induced by patching \mathcal{C} with activations from $\mathcal{M}(\mathbf{y})$ and $\mathcal{M} \setminus \mathcal{C}$ with activations from $\mathcal{M}(\mathbf{x})$,

 $\forall_{\mathbf{x} \in \mathcal{X}} : \mathcal{M}^*(\mathbf{x}) = \mathcal{M}(\mathbf{y}), \text{ and for } \mathcal{M}' \text{ induced by patching identically}$

except for $v \in \mathcal{C}$, $\exists_{\mathbf{x} \in \mathcal{X}} : \mathcal{M}'(\mathbf{x}) \neq \mathcal{M}(\mathbf{y})$.

Parameterized complexity analyses


Results

- A challenging complexity landscape for circuit finding in MLPs:
 - Hardness
 - Fixed-parameter intractability
 - Inapproximability
- Transformations that could help tackle some hard problems with better understood heuristics
- Introducing relaxations yields feasible queries with potentially useful properties

Table 4: Classical and parameterized complexity results by problem variant.

Classical & parameterized queries ³	Problem variants				
$\mathcal{P} = \mathcal{P}_{\mathcal{M}} \cup \mathcal{P}_{\mathcal{C}} \ \mathcal{P}_{\mathcal{M}} = \{\hat{L}, \hat{U}_{I}, \hat{U}_{O}, \hat{W}, \hat{B}\}$	Local		Global		
$\mathcal{P}_{\mathcal{C}} = \{\hat{l}, \hat{l}_w, \hat{u}, \hat{u}_I, \hat{u}_O, \hat{w}, \hat{b}\}$	Decision/Search Optimization		Decision/Search Optimization		
SUFFICIENT CIRCUIT (SC)	NP-complete	\mathcal{A} -inapprox.	Σ_2^p -complete	\mathcal{A} -inapprox.	
$\mathcal{P} ext{-SC}$	W[1]-hard	${\cal A}$ -inapprox.	W[1]-hard	\mathcal{A} -inapprox.	
Minimal SC	NP-complete	?	$\in \Sigma_2^p \mid \text{NP-hard}$?	
\mathcal{P} -Minimal SC	W[1]-hard	?	W[1]-hard	?	
Unbounded Minimal SC	?	N /	?	N /	
P-Unbounded Minimal SC	?	A	?	Δ	
Unbounded Quasi-Minimal SC	PTIME	/ A	?	/ A	
Count SC	#P-complete	#P-complete			
\mathcal{P} -Count SC	#W[1]-hard	N /	#W[1]-hard	N /	
Count Minimal SC	#P-complete	Λ	#P-hard	Λ	
P-Count Minimal SC	#W[1]-hard	/ A	#W[1]-hard	/ A	
Count Unbounded Minimal SC	#P-complete		#P-hard		
GNOSTIC NEURON (GN)	PTIME	N/A	?	N/A	
CIRCUIT ABLATION (CA)	NP-complete	\mathcal{A} -inapprox.	$\in \Sigma_2^p \mid \text{NP-hard}$	\mathcal{A} -inapprox.	
$\{\hat{L},\hat{U}_I,\hat{U}_O,\hat{W},\hat{B},\hat{u}\}$ -CA	W[1]-hard	\mathcal{A} -inapprox.	W[1]-hard	\mathcal{A} -inapprox.	
CIRCUIT CLAMPING (CC)	NP-complete	\mathcal{A} -inapprox.	$\in \Sigma_2^p \mid \text{NP-hard}$	\mathcal{A} -inapprox.	
$\{\hat{L},\hat{U}_O,\hat{W},\hat{B},\hat{u}\}$ -CC	W[1]-hard	\mathcal{A} -inapprox.	W[1]-hard	\mathcal{A} -inapprox.	
CIRCUIT PATCHING (CP)	NP-complete	\mathcal{A} -inapprox.	$\in \Sigma_2^p \mid \text{NP-hard}$	\mathcal{A} -inapprox.	
$\{\hat{L},\hat{U}_O,\hat{W},\hat{B},\hat{u}\}$ -CP	W[2]-hard	${\cal A}$ -inapprox.	W[2]-hard	\mathcal{A} -inapprox.	
Unbounded Quasi-Minimal CP	PTIME	N/A	?	N/A	
NECESSARY CIRCUIT (NC)	$\in \Sigma_2^p$ NP-hard	\mathcal{A} -inapprox.	$\in \Sigma_2^p \mid \text{NP-hard}$	\mathcal{A} -inapprox.	
$\{\hat{L},\hat{U}_I,\hat{U}_O,\hat{W},\hat{u}\}$ -NC	W[1]-hard	\mathcal{A} -inapprox.	W[1]-hard	\mathcal{A} -inapprox.	
CIRCUIT ROBUSTNESS (CR)	coNP-complete	?	$\in \Pi_2^p \mid \text{coNP-hard}$?	
$\{\hat{L},\hat{U}_I,\hat{U}_O,\hat{W},\hat{B},\hat{u}\}$ -CR	coW[1]-hard	?	coW[1]-hard	?	
$\{ H \}$ -CR		FPT	?	?	
$\{ H , \hat{U}_I\}$ -CR		FPT	FPT	FPT	
SUFFICIENT REASONS (SR)	$\in \Sigma_2^p$ NP-hard	$\in \Sigma_2^p \mid \text{NP-hard}$ 3PA-inapprox.		N/	
$\{\hat{L},\hat{U}_O,\hat{W},\hat{B},\hat{u}\} ext{-SR}$			/ A		

Get in touch

fedeadolfi.github.io