Learning from End User Data with Shuffled Differential Privacy over Kernel Densities

Tal Wagner

Tel Aviv University

The Blavatnik School of Computer Science and AI The Raymond and Beverly Sackle Faculty of Exact Sciences

```
6894021217890. 102423132790680
```

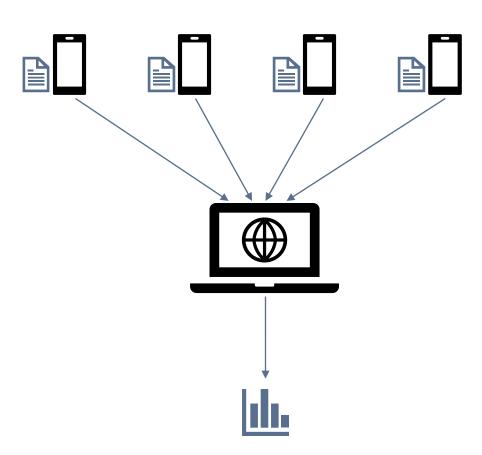
Problem: Private Distributed Topical Decoding

Network of end users

Each has a private text

Users communicate data to a central untrusted server

• Server goal: Detect topical themes (what user texts are about) without reading any text



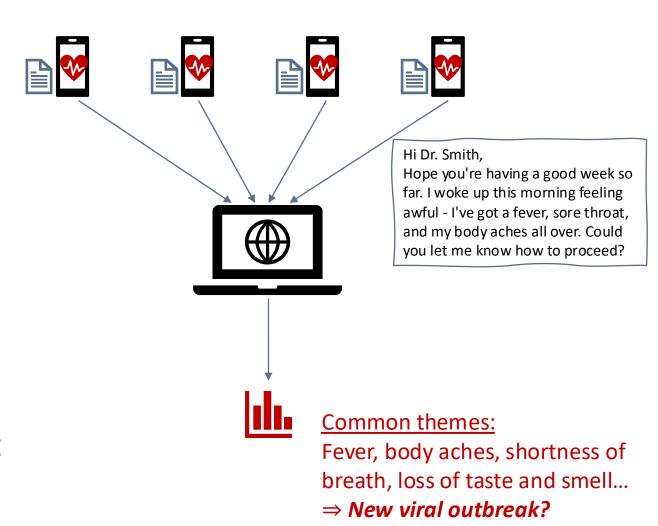
Example: Healthcare Apps

Network of end users

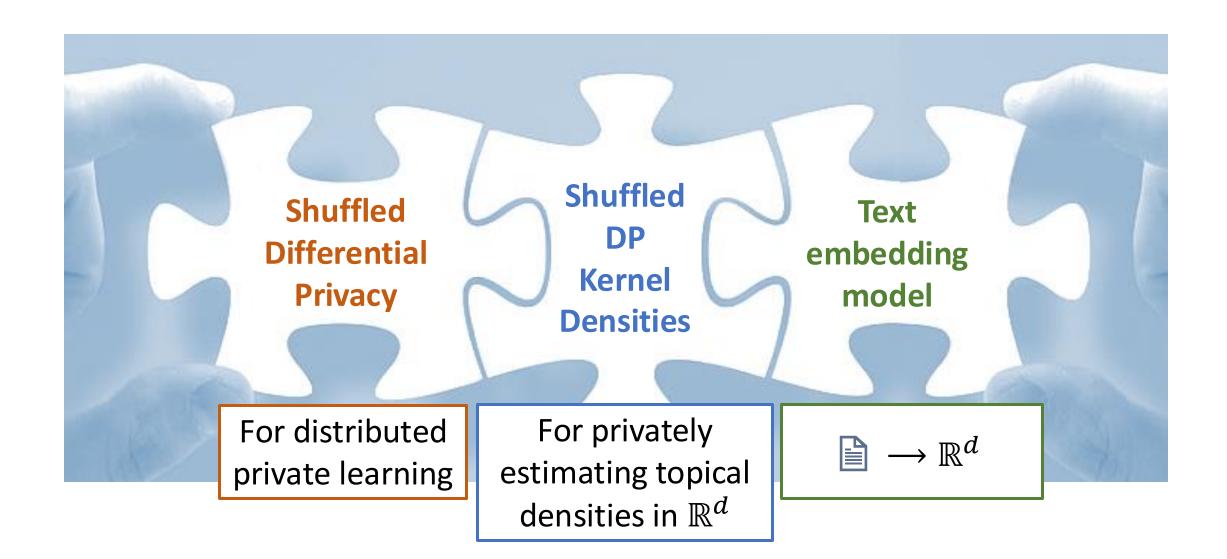
Each has a private text

Users communicate data to a central untrusted server

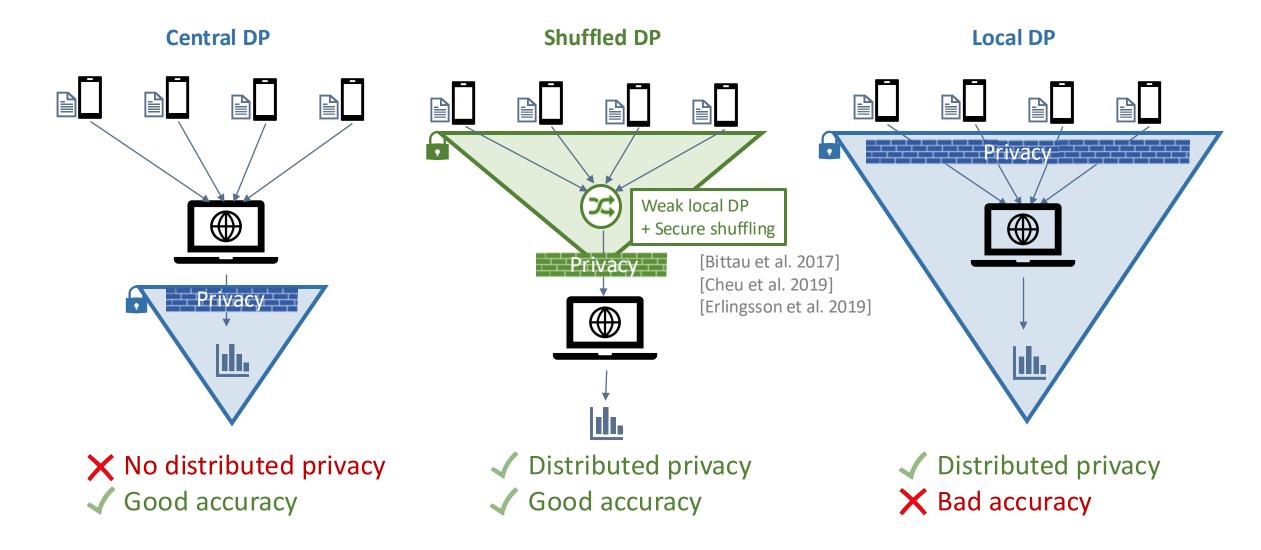
• Server goal: Detect topical themes (what user texts are about) without reading any text



Our Method Components

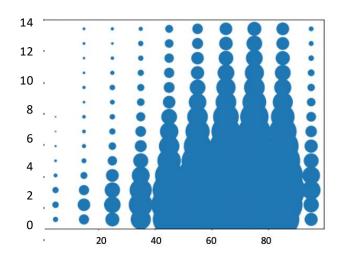


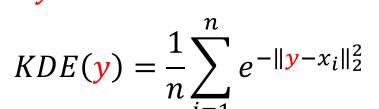
Distributed Privacy via Shuffled DP

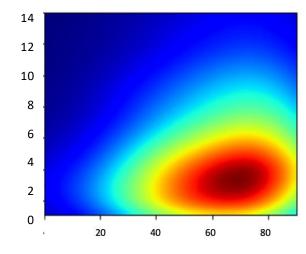


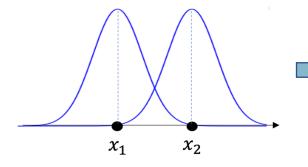
Kernel Density Estimation (KDE)

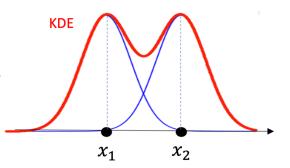
KDE turns a dataset $x_1, \dots, x_n \in \mathbb{R}^d$ into a continuous density function



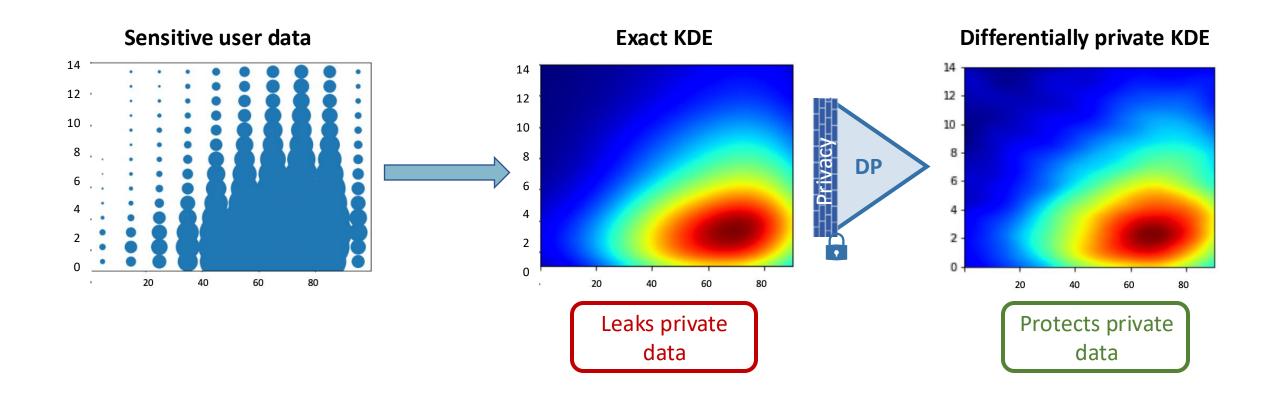








Private Kernel Density Estimation (DP KDE)

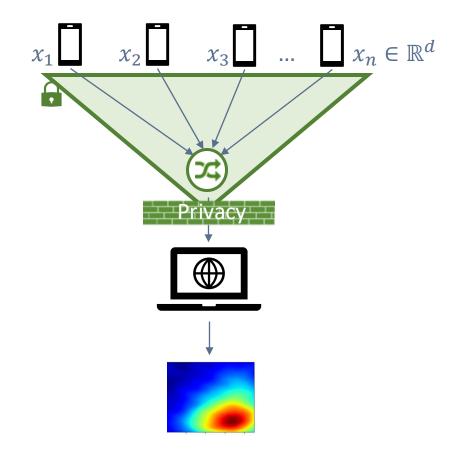


Main Theorem: Shuffled DP KDE

Theorem: Let $\varepsilon, \delta > 0$ such that $\varepsilon \leq \log(\delta^{-1})$. For every $\alpha \geq \frac{\sqrt{\log(\delta^{-1})}}{\varepsilon n}$, there is an n-user **shuffled DP** protocol that outputs an approximate Gaussian KDE function $\widetilde{KDE}(\cdot)$ over \mathbb{R}^d , such that:

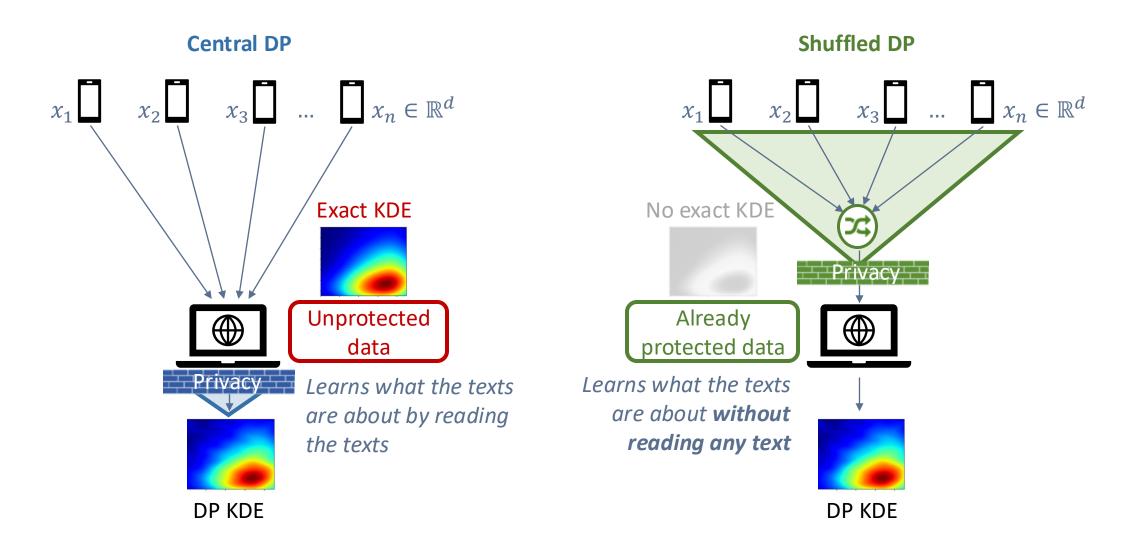
- Privacy: $\widetilde{KDE}(\cdot)$ is (ε, δ) -DP
- Accuracy:

SupRMSE =
$$\sup_{\mathbf{y} \in \mathbb{R}^d} \sqrt{\mathbb{E}[KDE(\mathbf{y}) - \widetilde{KDE}(\mathbf{y})]^2} \le \alpha$$

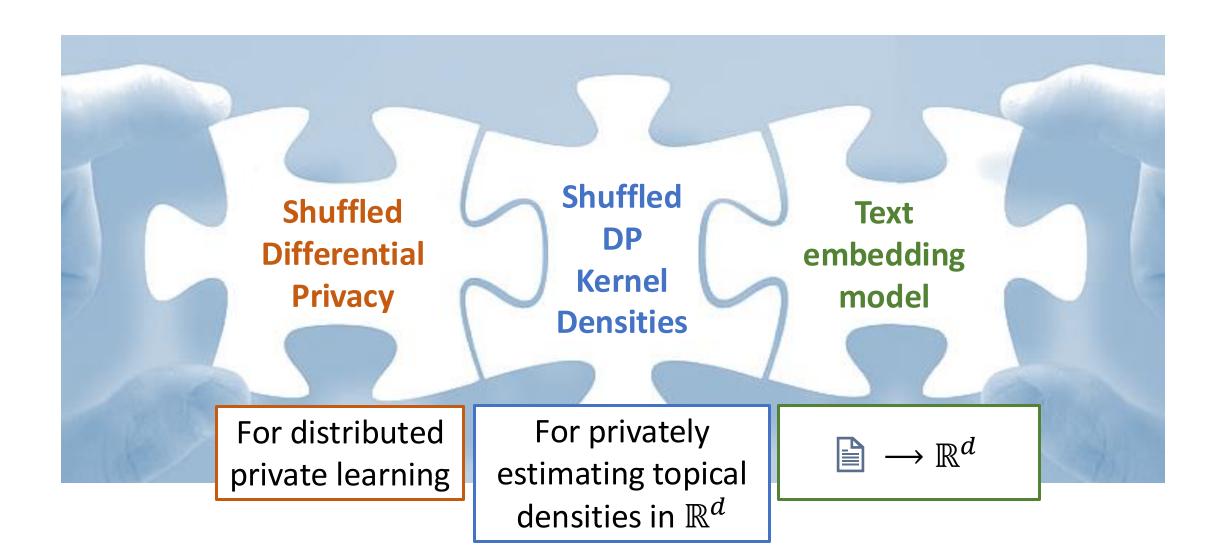


• Efficiency: User time $O\left(\frac{d}{\alpha^2}\right)$, communication $O\left(\frac{\log(\alpha^{-1})}{\alpha^2}\right)$ bits/user, server time $O\left(\frac{n}{\alpha^2}\right)$

Central vs. Shuffled DP KDE

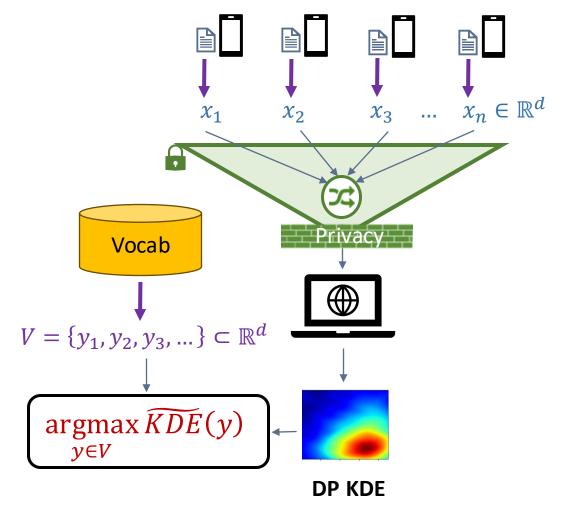


Putting Things Together



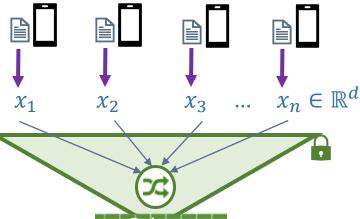
Private Distributed Topical Decoding

- Locally embed user texts in \mathbb{R}^d with a public embedding model (e.g., SentenceBert)
- Compute shuffled DP KDE function $\widetilde{KDE}(\cdot)$
- Take a public vocabulary (e.g., Glove 400k)
- Embed vocabulary in \mathbb{R}^d with the same public embedding model
- Output the vocabulary terms with the highest private density estimate $\widetilde{KDE}(\cdot)$



Some Experiments

• Privacy parameters: $\varepsilon \approx 3.2$, $\delta = 10^{-6}$



• Experiment 1:

- Most user texts are about artists (DBPedia-14 dataset)
- 8% of users have off-topic texts
- Top-3 DP KDE terms: artist, lyricists, musician

• Experiment 2:

- Most user texts are sports news articles (AG news dataset)
- 20% of users have off-topic news articles
- Top-3 DP KDE terms: *injury, semifinalists, finalists*

Thank You

