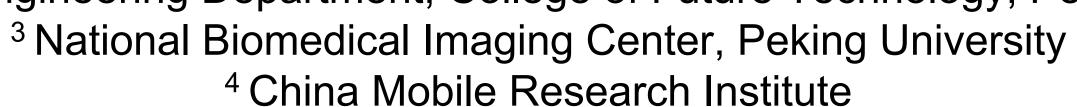


Universal Image Restoration Pre-training via Degradation Classification

JiaKui Hu^{1,2,3}, Lujia Jin⁴, Zhengjian Yao^{1,2,3}, Yanye Lu^{1,2,3,#}
Institute of Medical Technology, Peking University Health Science Center, Peking University ² Biomedical Engineering Department, College of Future Technology, Peking University



Restoration model can classify degradation

Preliminary experiment:

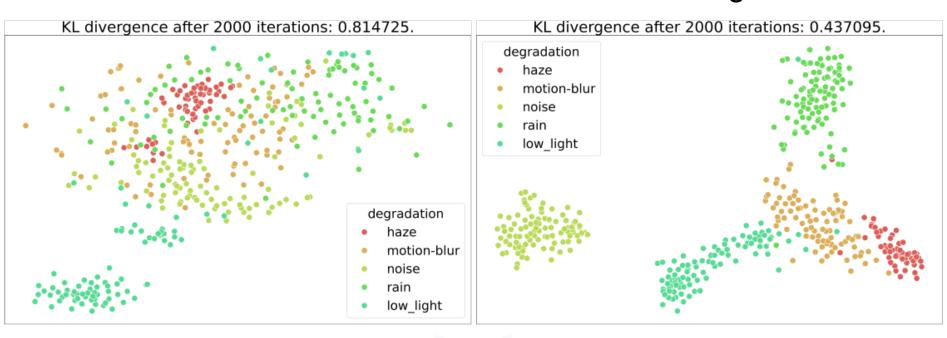
- Given restoration models trained on three degradation.
 (haze, rain, Gaussian noise)
- Their features are required to classify five degradation. (haze, rain, Gaussian noise, *motion blur*, and *low-light*)

Methods	NAFNet SwinIR Restormer PromptIR
Acc. on Random initialized (%)	$ 52 \pm 1 64 \pm 4 71 \pm 4 55 \pm 3$
Acc. on 3D all-in-one trained 200k iterations (%)	90 ± 5 92 ± 6 93 ± 3 93 ± 5
Acc. on 3D all-in-one trained 400k iterations (%)	$ 94 \pm 4 95 \pm 4 95 \pm 4 95 \pm 4$
Acc. on 3D all-in-one trained 600k iterations (%)	$94 \pm 5 \mid 95 \pm 4 \mid 97 \pm 2 \mid 95 \pm 4$

Results:

- Randomly initialized models can achieve 52 ~ 71 % degradation classification accuracy.
- After the 3D all-in-one training, models achieve an accuracy of 94% or higher in classifying degradation, including unseen ones.

Visualization: T-SNE results of PromptIR on five degradation after random initialization and 3D all-in-one training.



Conclusions:

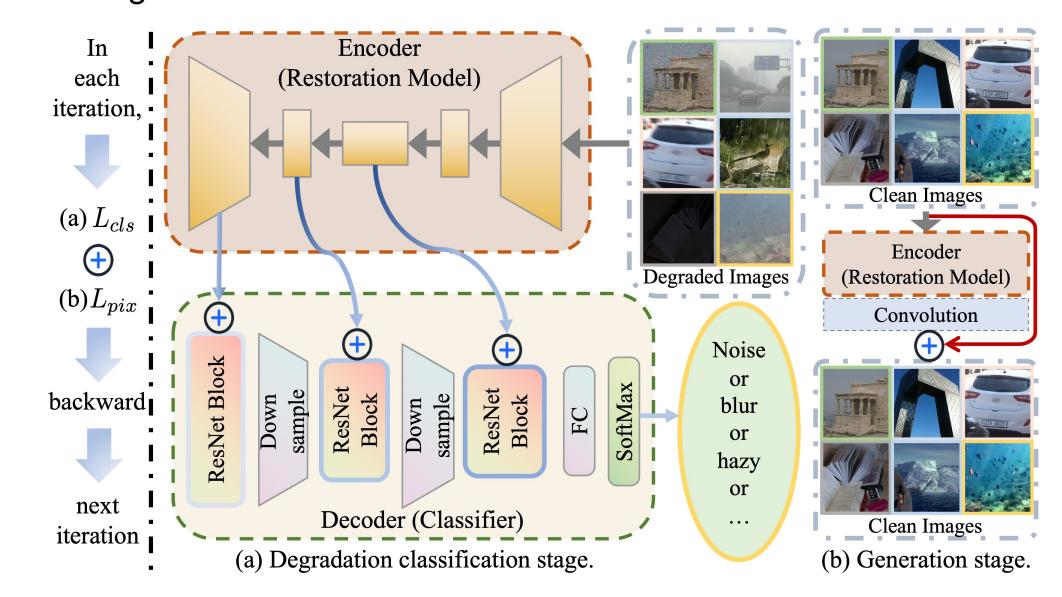
- Randomly initialized models demonstrate an inherent capability to classify degradation.
- Models trained on the all-in-one task exhibit the ability to discern unknown degradation.
- There is a degradation understanding step in the early training of the restoration model.

Motivation:

!!! bringing the degradation classification stage forward !!!

DCPT: Degradation Classification Pre-Training

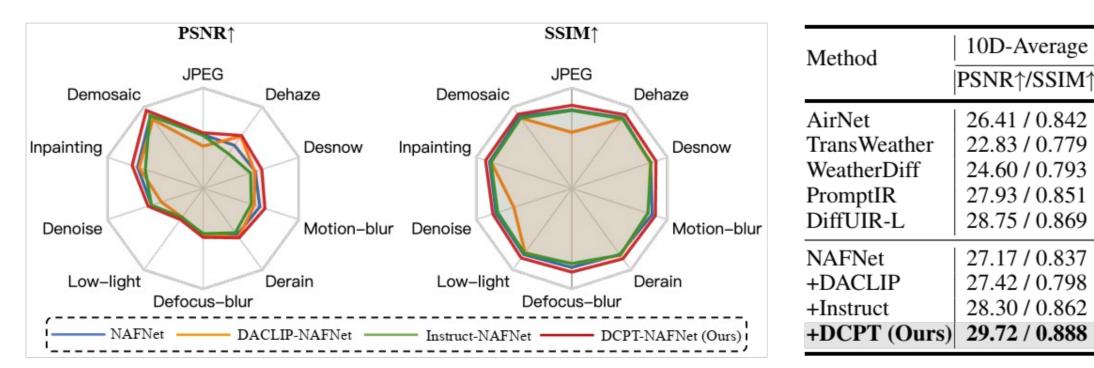
DCPT combines degradation discrimination and generation in single restoration model.



Quantitative Results: Universal image restoration

- 1. Applicable to various network structures. DCPT consistently achieves average PSNR improvements of 2.08 dB and above.
- 2. Archiving SoTA performance in all-in-one restoration.
- 3. More efficient than other degradation embedding, e.g., physical degradation models (IDR) and human instructs (InstructIR).

Method	Dehazing	Deraining	Denoising	Deblurring	Low-Light	Average	
	PSNR↑/SSIM↑	PSNR↑/SSIM↑	PSNR↑/SSIM↑	PSNR↑/SSIM↑	PSNR†/SSIM↑	PSNR↑/SSIM↑	
AirNet	21.04 / 0.884	32.98 / 0.951	30.91 / 0.882	24.35 / 0.781	18.18 / 0.735	25.49 / 0.846	
IDR	25.24 / 0.943	35.63 / 0.965	31.60 / 0.887	27.87 / 0.846	21.34 / 0.826	28.34 / 0.893	
InstructIR	27.10 / 0.956	36.84 / 0.973	31.40 / 0.887	29.40 / 0.886	23.00 / 0.836	29.55 / 0.907	
SwinIR	21.50 / 0.891	30.78 / 0.923	30.59 / 0.868	24.52 / 0.773	17.81 / 0.723	25.04 / 0.835	
DCPT-SwinIR	28.67 / 0.973	35.70 / 0.974	31.16 / 0.882	26.42 / 0.807	20.38 / 0.836	28.47 / 0.894	
NAFNet	25.23 / 0.939	35.56 / 0.967	31.02 / 0.883	26.53 / 0.808	20.49 / 0.809	27.76 / 0.881	
DCPT-NAFNet	29.47 / 0.971	35.68 / 0.973	31.31 / 0.886	29.22 / 0.883	23.52 / 0.855	29.84 / 0.914	
Restormer	24.09 / 0.927	34.81 / 0.962	31.49 / 0.884	27.22 / 0.829	20.41 / 0.806	27.60 / 0.881	
DCPT-Restormer	29.86 / 0.973	36.68 / 0.975	31.46 / 0.888	28.95 / 0.879	23.26 / 0.842	30.04 / 0.911	
PromptIR	25.20 / 0.931	35.94 / 0.964	31.17 / 0.882	27.32 / 0.842	20.94 / 0.799	28.11 / 0.883	
DCPT-PromptIR	30.72 / 0.977	37.32 / 0.978	31.32 / 0.885	28.84 / 0.877	23.35 / 0.840	30.31 / 0.911	

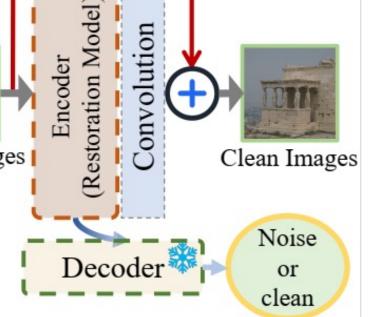


Decoder helps cross-degradation generalization

Unlike previous pre-training methods, our decoder is not discarded.

In DC-guided training,

the role of the decoders is limited Noisy Images to classifying the input images into two categories: clean and degraded.



DC-guided training achieves greater performance gains on tasks that are more difficult to generalize to.

DC-guided	Target task	Denoise		Deblur		Derain	
	Source task	Deblur	Derain	Denoise	Derain	Denoise	Deblur
×	PSNR↑	31.50	31.65	25.44	27.51	31.99	32.85
~	PSNR ↑	31.62	31.69	30.36	28.79	36.29	35.77
Supervised	PSNR ↑	31.78		32.92		36.74	

Qualitative Results: Universal image restoration

