

Learning vector fields of Differential equations on manifolds with Geometrically constrained operator-valued kernels

Daning Huang¹, Hanyang He², John Harlim³, Yan Li²

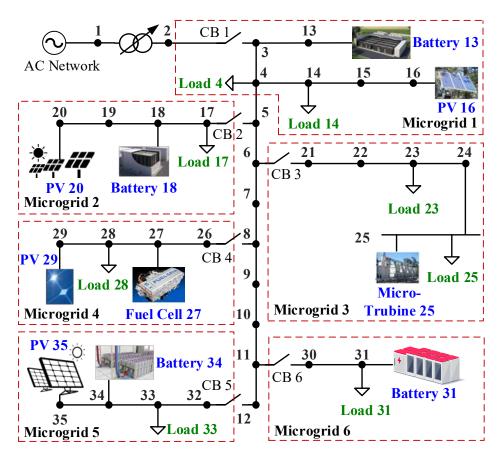
¹Dept. of Aerospace Engineering, ²Dept. of Electrical Engineering,

³Dept. of Mathematics, Dept. of Meteorology & Atmospheric Science, Inst. for Comp. and Data Sciences

The Pennsylvania State University, University Park, PA 16802, USA

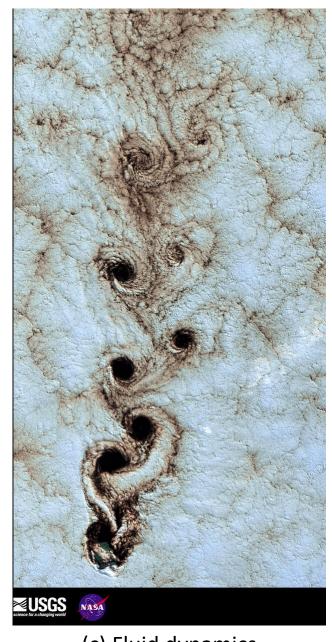
{daning,hfh5310,jharlim,yql5925}@psu.edu

ODEs on manifolds are common



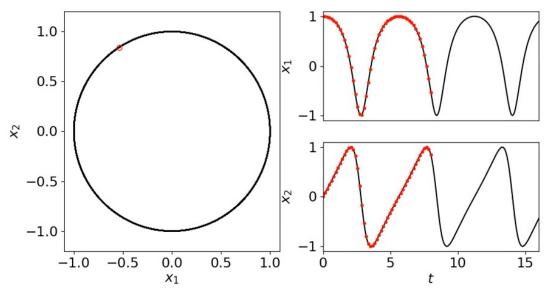
(a) Power grid (multiple time scales)

(b) Robotic system (algebraic constraints)



(c) Fluid dynamics (inertia manifold) ²

Learning and solving such ODEs is non-trivial



Simple example

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \mathbf{x} \in M$$

Manifold: *M*

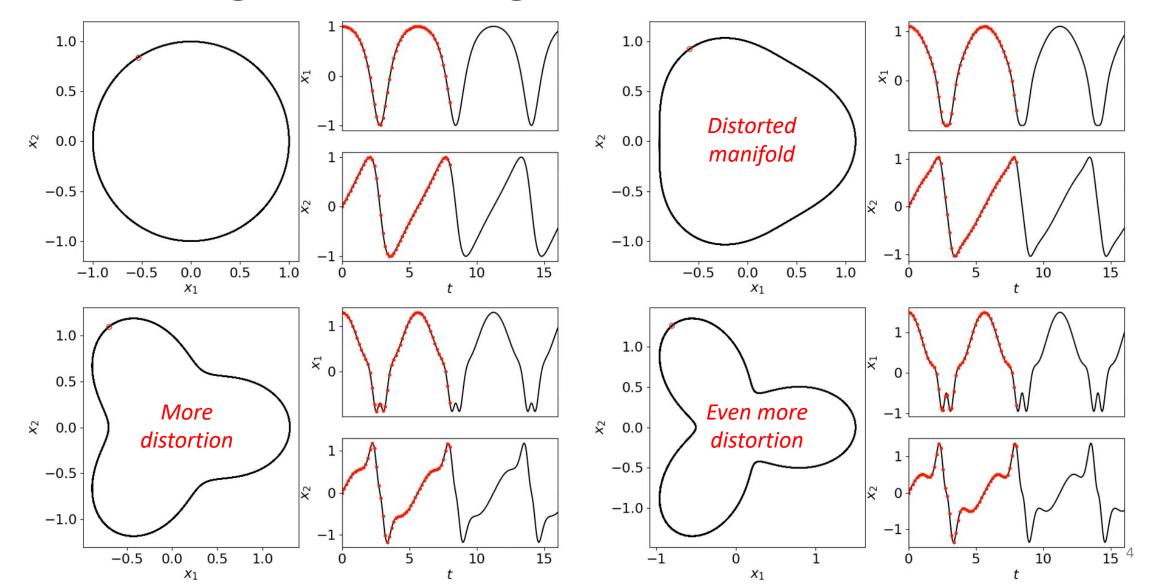
- Intrinsically 1D
- Embedded in 2D

Question:

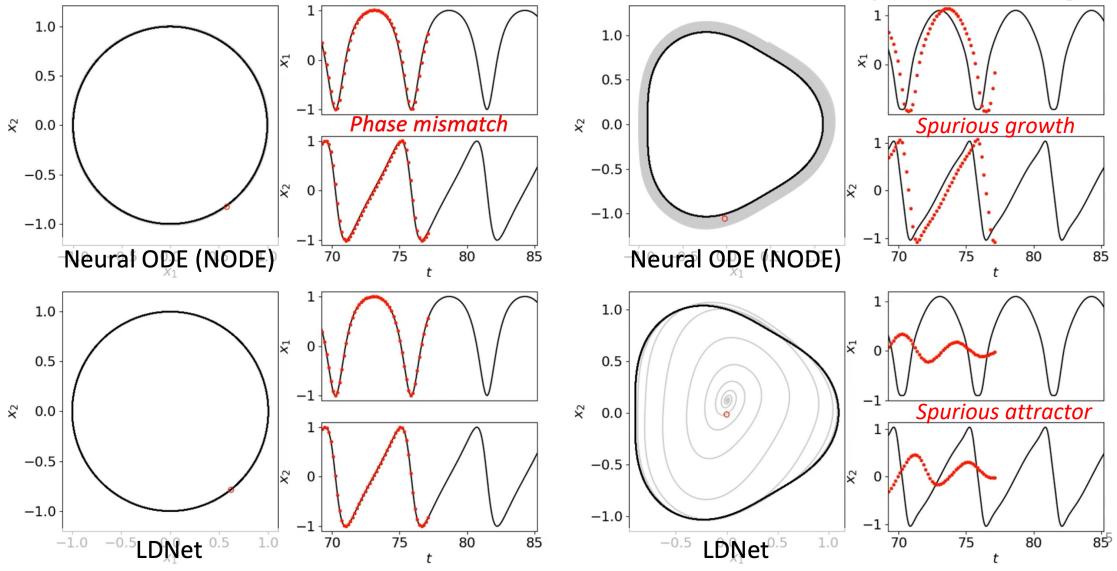
Given trajectory data $\{(t_i, \mathbf{x}_i)\}_{i=1}^N$

- How to learn f(x), which should be a vector field on M?
- How to solve $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, so that the solution stays on M?

Learning and solving such ODEs is non-trivial



Challenges illustrated – 1/2



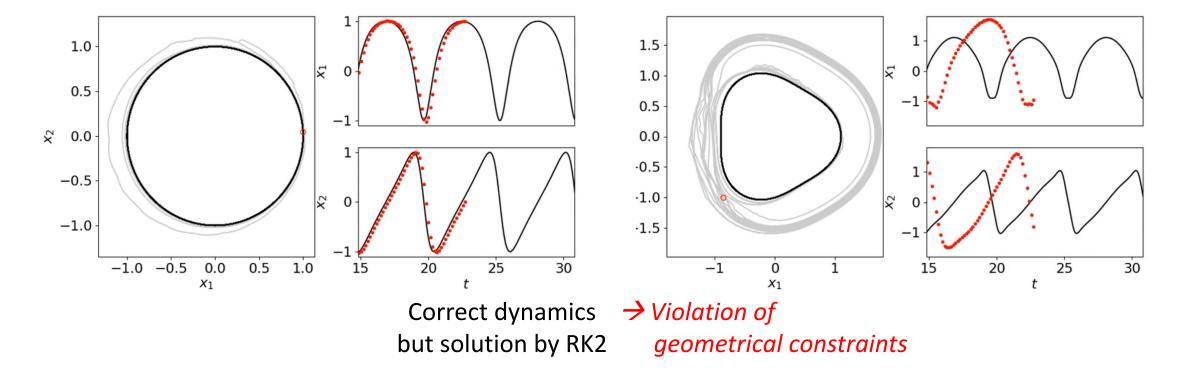
#1 Suboptimal compression #2 Unconstrained dynamics

#3 Vanilla time integrator

#4 Expensive training

Challenges illustrated – 2/2

#1 Suboptimal compression #2 Unconstrained dynamics #3 Vanilla time integrator #4 Expensive training



Our method to resolve all

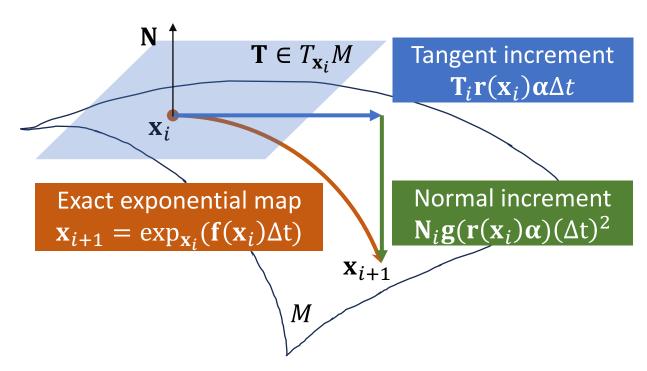
1.0 1.0 -× 0 1 0.5 0.5 χ_2 χ_2 0.0 0.0 -0.5-0.5X2 -1.0-1.015 1.0 1.0 15 0.5 10 0.5 10 -1.0-0.50.0 0 5 -1.0-0.50.0 1.0 1.0 ۲ ₀ 0.5 0.5 0.0 0.0 -0.5-0.5X2 χ_2 -1.0-1.00.0 0.5 1.0 10 15 10 Ó x_1

#1 Suboptimal compression#2 Unconstrained dynamics#3 Vanilla time integrator#4 Expensive training

Our solution

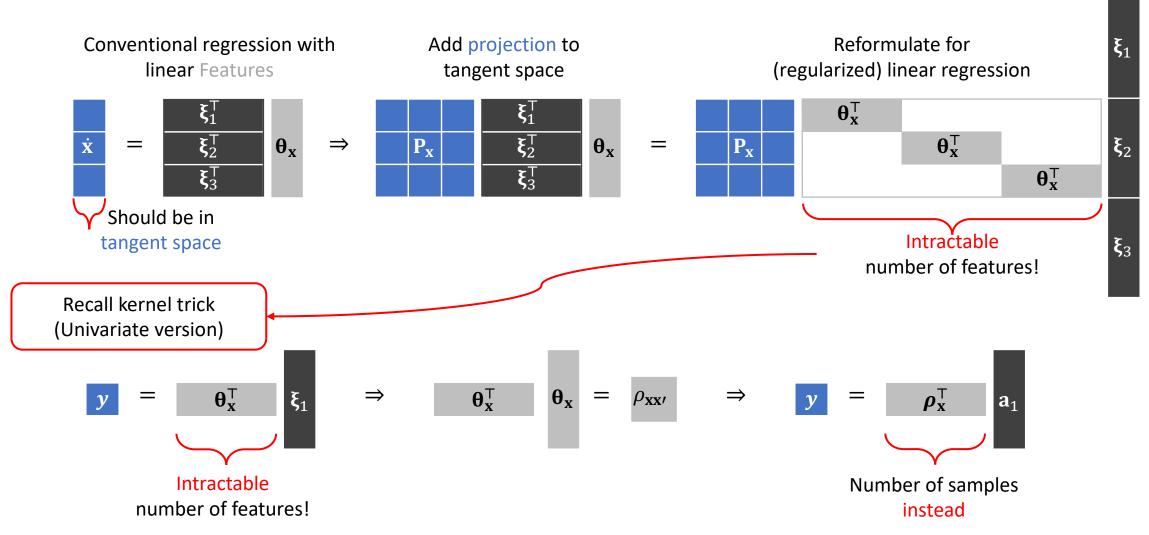
Identity of exponential map:

$$\mathbf{x}_{i+1} = \exp_{\mathbf{x}_i}(\mathbf{f}(\mathbf{x}_i)\Delta t) = \mathbf{x}_i + \underbrace{\mathbf{T}_i \mathbf{T}_i^\top (\mathbf{x}_{i+1} - \mathbf{x}_i)}_{\text{Tangent: } \mathbf{f}(\mathbf{x}_i)\Delta t} + \underbrace{\mathbf{N}_i \mathbf{N}_i^\top (\mathbf{x}_{i+1} - \mathbf{x}_i)}_{\text{Normal: } O((\Delta t)^2)}$$

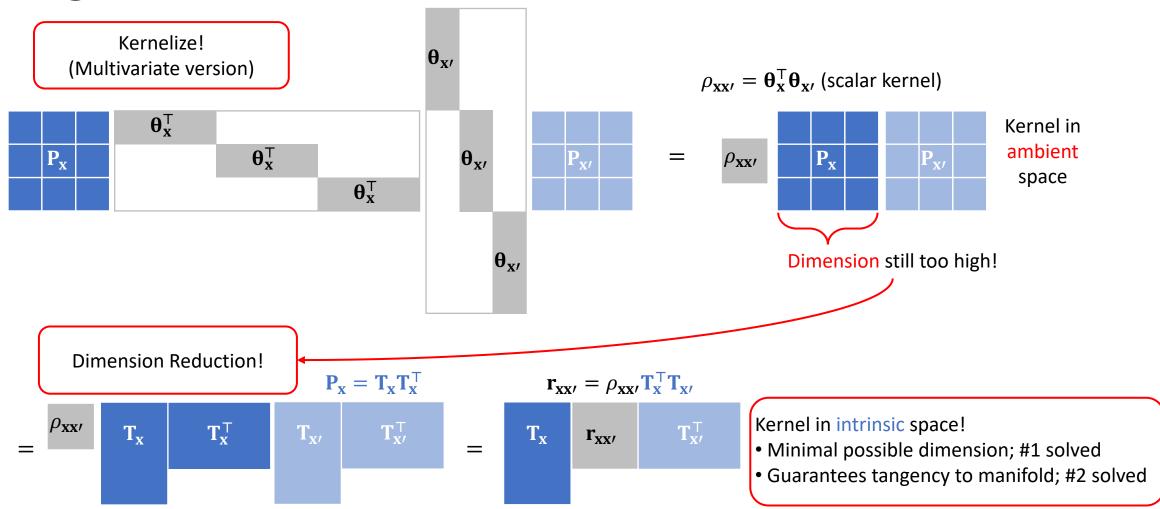


- Ingredient 1: Solves #1 and #2
 Geometric Multivariate
 Kernel Ridge Regression (GMKRR)
- Ingredient 2: Solves #3
 Normal Correction (NC) by
 Generalized Moving Least Squares (GMLS)
- Ingredients 1+2: Solves #4

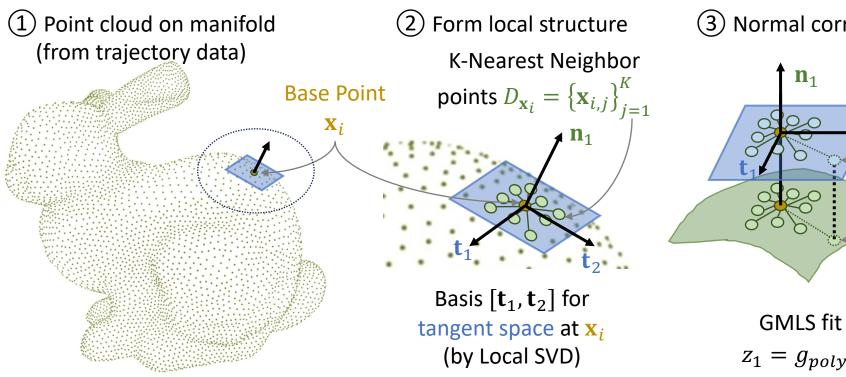
Ingredient #1: Geometric Multivariate KRR



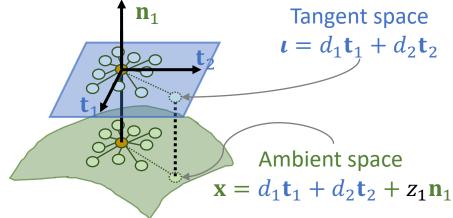
Ingredient #1: Geometric Multivariate KRR



Ingredient #2: Normal Correction



(3) Normal correction by polynomial fit



GMLS fit by
$$D_{\mathbf{x}_i}$$

 $z_1 = g_{poly}(d_1, d_2)$

Summary of algorithm

Theory:
$$\mathbf{x}_{i+1} = \exp_{\mathbf{x}_i}(\mathbf{f}(\mathbf{x}_i)\Delta t) = \mathbf{x}_i + \mathbf{T}_i\mathbf{T}_i^{\top}(\mathbf{x}_{i+1} - \mathbf{x}_i) + \mathbf{N}_i\mathbf{N}_i^{\top}(\mathbf{x}_{i+1} - \mathbf{x}_i)$$

Tangent: $\mathbf{f}(\mathbf{x}_i)\Delta t$ Normal: $O((\Delta t)^2)$

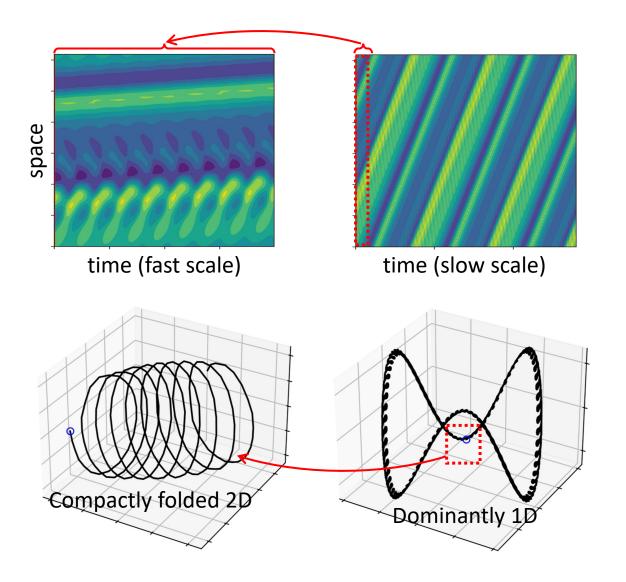
Algorithm: $\hat{\mathbf{x}}_{\epsilon,i+1} = \hat{\mathbf{x}}_{\epsilon,i} + \Delta t\mathbf{f}_{\epsilon}(\hat{\mathbf{x}}_{\epsilon,i}) + (\Delta t)^2\hat{\mathbf{N}}_{\epsilon,i}\hat{g}(\hat{\mathbf{T}}_{\epsilon,i}^{\top}\mathbf{f}_{\epsilon}(\hat{\mathbf{x}}_{\epsilon,i})))$

Geometric Multivariate Norm Kernel Ridge Regression Generalized

Normal Correction by Generalized Moving Least Squares

Convergence: $\sqrt{\mathbb{E}_{\mu}\left[\|\mathbf{x}_{n} - \hat{\mathbf{x}}_{\epsilon,n}\|^{2}\right]} \leq C \left(\epsilon + \Delta t \left(\frac{\log(N)}{N}\right)^{\frac{\ell}{d}}\right) \frac{\text{Manifold smoothness}}{\text{Intrinsic dimension}}$ Expected error at $t = n\Delta t$ Error of learned vector field (first-order accurate) # of data points

Numerical demonstrations



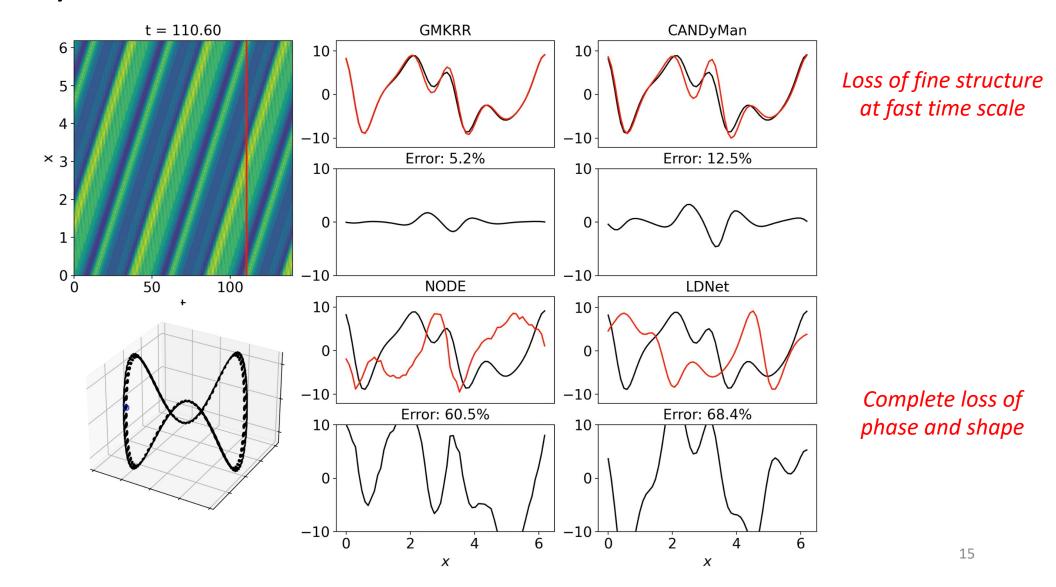
Example: 1D Kuramoto-Sivashinsky $u_t + uu_x + u_{xx} + vu_{xxxx} = 0$

- Inertia manifold with $v = \frac{4}{87}$ and periodic BC
- Time scale disparity: fast and slow
- Intrinsic dimension: 2
- Ambient dimension: 64

Slow Fast standing traveling Fast Dynamics wave wave t = 3.44**CMK**RR CANDy Man10 10 0 -10Error: 4.4% Error: 0.2% × 3-Accumulation of phase mismatch -1NODE LDNet 10 10 0 -10 -10^{-1} Error: 7.4% Error: 0.4% 0 -High-freq error 2 14

Χ

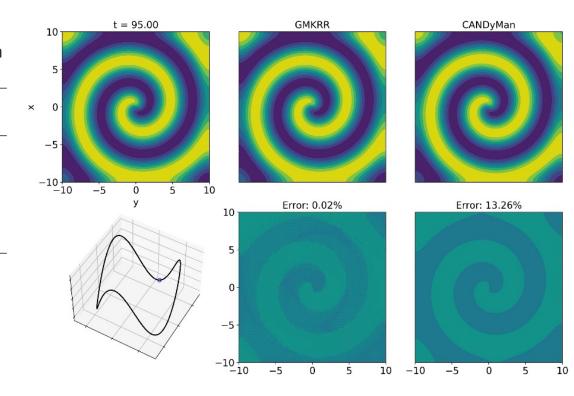
Slow Dynamics



Summary

#1 Optimal compression – up to intrinsic dimension #2 Constrained dynamics – by operator-valued kernel #3 Time integrator – preserving geometry #4 Efficient training – no NN's at all

CASE	MODEL	Training Time (s)	Pred. Time (s)	RMSE	Maximum Error
KS	CANDyMan	48.04	0.6703	0.2744	2.130
Beating	GMKRR	0.01367	0.5133	0.02549	0.1972
KS Travelling	CANDyMan	70.10	19.44	2.391	15.22
	NODE	395.6	4.166	6.690	22.14
	LDNet	77.87	13.53	7.600	22.46
	GMKRR-Full	11.68	20.82	1.604	12.45
	GMKRR-FFT	0.04550	24.41	0.3671	3.088
Reaction- Diffusion	CANDyMan	265.8	14.59	0.1797	0.5517
	GMKRR-Full	3.723	175.4	7.394E-4	2.959E-3
	GMKRR-PCA-T0	0.01953	4.786	7.399E-4	2.961E-3
	GMKRR-PCA-T4	0.1187	8.5855	1.216E-4	1.339E-3



Quantitative comparison

Reaction-diffusion Ambient dim.: 20402

Learning vector fields of Differential equations on manifolds with Geometrically constrained operator-valued kernels

Daning Huang¹, Hanyang He², John Harlim³, Yan Li²

