Wavelet-based Positional Representation for Long Context

Yui Oka Taku Hasegawa Kyosuke Nishida Kuniko Saito

NTT Human Informatics Laboratories, NTT Corporation

Overview of the Task: Long Context and Extrapolation

- ☐ Position encoding focuses on representation using sine waves
- □ RoPE using sine waves does not have extrapolation performance□ Extrapolation-capable ALiBi limits the receptive field of attention
- ☐ We propose a new position encoding based on wavelets that is extrapolation-capable without limiting the receptive field of attention

Preliminary

■ Wavelet is a wave that decays quickly and locally as it approaches zero. The wavelet function ψ is defined as follows.In this case, b is the shift and a>0 is the scale parameter.

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right).$$

■ Wavelet transform (WT) is the process of transforming a signal x(t) into the frequency domain and time domain by computing the inner product of the wavelet function $\psi_{a,b}(t)$ and signal x(t). When $a \in [2,4]$ and $b \in [0,1,2,3]$, the wavelet transform can be expressed in terms of determinants as follows:

$$\begin{bmatrix} W(2,0) \\ W(4,0) \\ W(2,1) \\ W(4,1) \\ \vdots \\ W(4,3) \end{bmatrix} = \begin{bmatrix} \psi_{2,0}(0) & \psi_{2,0}(1) & \psi_{2,0}(2) & \dots & \psi_{2,0}(T-1) \\ \psi_{4,0}(0) & \psi_{4,0}(1) & \psi_{4,0}(2) & \dots & \psi_{4,0}(T-1) \\ \psi_{2,0}(-1) & \psi_{2,0}(0) & \psi_{2,0}(1) & \dots & \psi_{2,0}(T-2) \\ \psi_{4,0}(-1) & \psi_{4,0}(0) & \psi_{4,0}(1) & \dots & \psi_{4,0}(T-2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{4,0}(-3) & \psi_{4,0}(-2) & \psi_{4,0}(-1) & \dots & \psi_{4,0}(T-3) \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(T-1) \end{bmatrix}$$

RoPE incorporates positional information directly into the self-attention mechanism by rotating the query and key vectors in complex space. When divided into even and odd dimensions, the following calculations are performed for the m-th query in each sequence. In even dimensions, RoPE is expressed as follows.

$$\begin{bmatrix} q_0^m \\ q_2^m \\ \vdots \\ q_{d-2}^m \end{bmatrix} = \begin{bmatrix} \cos m\theta_1 - \sin m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 - \sin m\theta_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \cos m\theta_{d/2} - \sin m\theta_{d/2} \end{bmatrix} \begin{bmatrix} q_0^m \\ q_1^m \\ \vdots \\ q_{d-2}^m \\ q_1^m \end{bmatrix}$$

where $q^m \in \mathbb{R}^{1 \times d}$ is the m-th query when the number of dimensions is d and $\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]$.

Findings 1: Multi-Window Characteristics in ALiBi

The attention map shows that **ALiBi uses multiple window sizes corresponding to relative positions** and that the window size increases as the slope decreases.

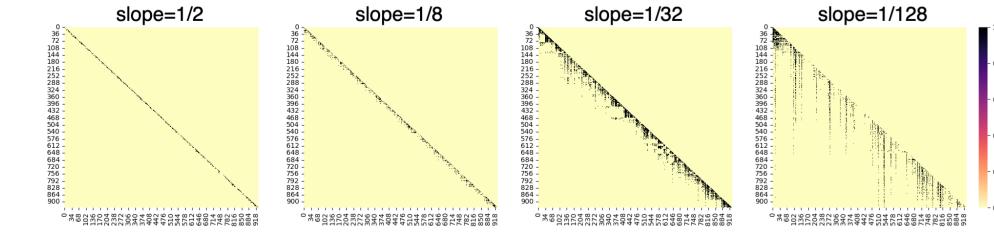


Figure 1. Heatmap of scaled attention scores via softmax normalization in ALiBi without non-overlapping inference. The trainning length is 512, and the inference length is 1012.

Findings 2: RoPE is Wavelet-Transform

First, we show the wavelet transform using the following two Haar-like wavelets.

$$\psi(t) = \begin{cases} \cos f(t) & 0 \le t < 1, \\ -\sin f(t) & 1 \le t < 2, \\ 0 & \text{otherwise.} \end{cases} \quad \psi'(t) = \begin{cases} \sin f(t) & 0 \le t < 1, \\ \cos f(t) & 1 \le t < 2, \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

Assuming that when $x(t)(0 \le t \le d-1)$ is a signal with d elements, the wavelet ψ is used and wavelet transform is performed at each scale a=1. We define the shift parameter as $b_j=j-\delta(j)(j=0,2,..,d-2)$. Here, $\delta(t)$ is a function such that $0 \le t \le d-1$ and $0 \le \delta(t) < 1$. When the wavelet function is Haarlike wavelet $\psi(t)$ in Eq.(1) and a=1 and $b \in [b_0,b_2,..,d_{d-2}]$, the wavelet matrix ψ in the wavelet transform $w=\psi x$ can be expressed in terms of determinants as follows.

$$\begin{bmatrix} W(1,b_0) \\ W(1,b_2) \\ \vdots \\ W(1,b_{d-2}) \end{bmatrix} = \begin{bmatrix} \cos\phi_0 - \sin\phi_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos\phi_2 - \sin\phi_3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \cos\phi_{d-2} - \sin\phi_{d-1} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(d-2) \\ x(d-1) \end{bmatrix}.$$
(2)

To simplify the notation in the matrix representation above, we write ϕ_j for $j=0,1,\ldots,d-1$, where $\phi_j=f(1+\delta(j))$ if j is odd, and $\phi_j=f(\delta(j))$ otherwise. Let x be the query q^m , and define f such that $\phi_j=\phi_{j+1}=m\theta_{\left\lceil\frac{j+1}{2}\right\rceil}$ for $j=0,1,\ldots,d-1$, where $\phi_j=f(1+\delta(j))$ if f is odd, and f is a such that f is a

 $0, 2, 4, \dots, d-2$, where $\theta_i = 10000^{-2(i-1)/d}$ and $i \in [1, 2, \dots, d/2]$.

$$\begin{bmatrix} W(1,b_0) \\ W(1,b_2) \\ \vdots \\ W(1,b_{d-2}) \end{bmatrix} = \begin{bmatrix} \cos m\theta_1 - \sin m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 - \sin m\theta_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \cos m\theta_{d/2} - \sin m\theta_{d/2} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(d-2) \\ x(d-1) \end{bmatrix}$$

RoPE can be viewed as a wavelet transform using Haar-like wavelets that change amplitude on a fixed scale. This wavelet transform in RoPE is performed across the number of query head dimensions d.

Motivation

- Position-based Transformation: RoPE predominantly relies on independent transformation based on the 'head' dimensions. We apply a wavelet transform based on the relative position of the sentence.
- Type of Wavelet: RoPE can be thought of as a wavelet transform using the Haar wavelet. We use more complex wavelet shapes.
- Diversification of Window Sizes (Scale Parameters): ALiBi have multiple windows and it may effective for long contexts. We introduce a variety of scale and shift parameters.

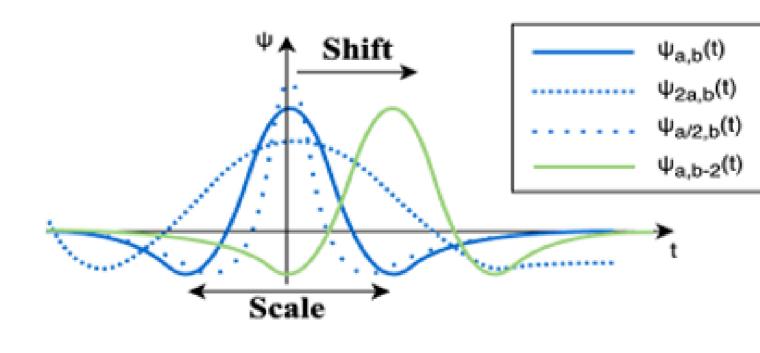


Figure 2. Example of Wavelet

Proposed Method: Wavelet-based Positional Representation

1. Incorporating Wavelet Transform into PE We incorporate wavelets based on RPE.

$$e_{m,n} = \frac{q_m k_n^T + q_m (p_{m,n})^T}{\sqrt{d}},$$
 (4)

2. Wavelet Function We used the Ricker wavelet as a base wavelet. We substitute the relative position m-n into t.

$$\psi(t) = (1 - t^2) \exp\left(\frac{-t^2}{2}\right). \tag{5}$$

3. Shift and scale parameters We use s distinct patterns for the scale parameter a and $\frac{d}{s}$ patterns for the shift parameter b.

$$(a,b) \in \{2^0, 2^1, 2^2, \dots 2^{s-1}\} \times \{0, 1, 2, 3, \dots, \frac{d}{s} - 1\}.$$

Finally, $p_{m,n}$ is computed as follow

$$p_{m,n} = \left(1 - \left(\frac{m-n-b}{a}\right)^2\right) \exp\left(-\frac{1}{2}\left(\frac{m-n-b}{a}\right)^2\right).$$

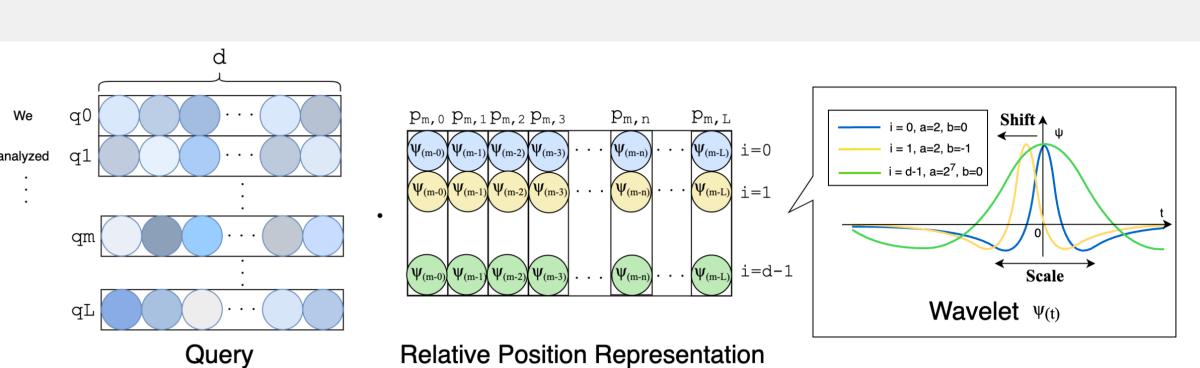


Figure 3. Overview of Wavelet-based Relative Positional Representation As in RPE (shaw+, 2018), our method computes a relative positional representation $(p_{m,n})^T$ to the query q_m and (6) the key k_n . Instead of learnable embedding in RPE, the position is computed based on the wavelet function. Different wavelet functions $\psi_{a,b}$ are used for each dimension of the head d. Furthermore, the scale parameter a and the shift parameter b change depending on the dimension of the head d.

Experiments

Experimental Settings

- · Model size d_{emb} is 1024, Head size is 8, d_{head} is 128, layer size is 16.
- · Max Allowable Length in Pre-training 512
- · Dataset Wikitext-103 (Train, Dev, Test)
- Evaluation Perplexity without Sliding Window

Comparison Method

- · ALiBi
- RoPE ($\theta = 10000 \text{ or } 500000$)
- NoPE Position information is not given
- · Transformer-XL PE A relative PE that uses sine waves

Wavelet Type in Our method

- Ricker
- Haar
- Morlet

Gaussian

1.00 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.

*We use s=8 scale variants ($a \in \{2^0, 2^1, ..., 2^7\}$) and 16 shift variants ($b \in \{0, 1, 2, ..., 15\}$), resulting in $8 \times 16 = 128$ unique wavelets.

Pernlevity R

Perplexity Results

PE Type	pos	128	256	512	1012	1512	2512
NoPE	-	26.38	23.23	21.53	21.03	21.58	48.48
$RoPE (\theta = 10000)$	abs	23.82	20.98	19.39	23.25	44.38	93.94
RoPE ($\theta = 500000$)	abs	23.81	20.95	19.35	23.70	40.39	77.90
Trans-XL	rel	24.16	21.53	19.96	19.09	18.92	19.05
ALiBi	rel	24.18	21.32	19.69	18.71	18.42	18.41
Wavelet(Ricker)	rel	23.64	20.82	19.19	18.23	18.00	17.99
Haar	rel	23.73	20.89	19.27	18.34	18.11	18.17
Morlet	rel	24.15	21.28	19.65	19.02	20.46	26.56
Gaussian	rel	23.77	20.90	19.30	18.31	18.02	17.88

- ! RoPE cannot be extrapolated without using a sliding window mechanism.
- ! ALiBi underperforms compared to RoPE on short sentences.
- ! Our wavelet-based methods—particularly those using the Ricker wavelet—consistently achieve the best performance across all sequence lengths, and they are also naturally extrapolatable.
- ! The Morlet wavelet, which closely resembles a sine wave in its shape, yielded the poorest results. This suggests that sine-wave-like patterns are not well-suited for encoding relative positional information.

Experiments with Llama-7B

Experimental Settings

- · Model size Llama2-7B
- · Max Allowable Length in Pre-training 4096
- · Dataset Redpajame (Train, Dev) CodeParrot (Test)
- · Evaluation Perplexity with Sliding Window

Perplexity Results

PE Type	pos	4k	8k	16k	32k
RoPE ($\theta = 500000$)	abs	9.45	9.33	9.12	8.90
Wavelet(Ricker)	rel	9.00	9.01	8.83	8.60

*We use s = 8 scale variants ($a \in \{2^2, 2^3, ..., 2^9\}$) and 16 shift variants ($b \in \{0, 1, 2, ..., 15\}$), resulting in $8 \times 16 = 128$ unique wavelets.

ICLR 2025, Singapore