
Procedural Synthesis of Synthesizable Molecules

Michael Sun¹, Alston Lo¹, Minghao Guo¹, Jie Chen³, Connor Coley², Wojciech Matusik¹

MIT-IBM Watson AI Lab

¹MIT CSAIL, ²MIT Chemical Engineering, ³MIT-IBM Watson AI Lab

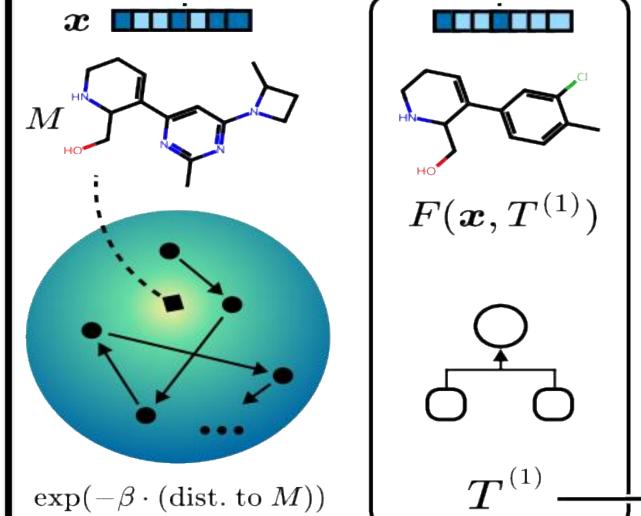
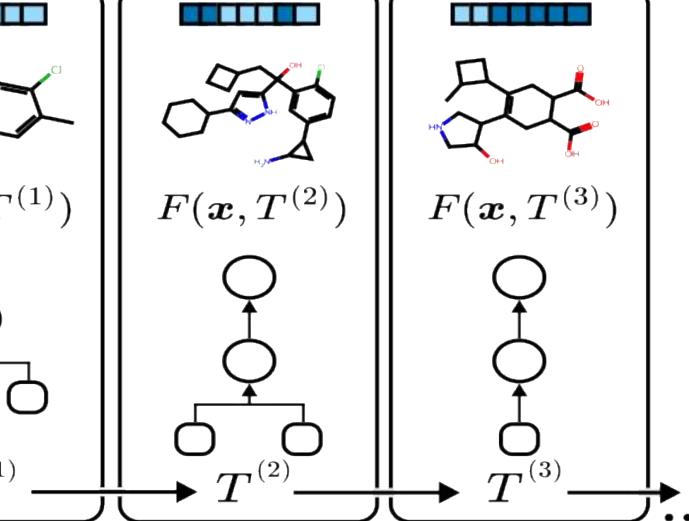
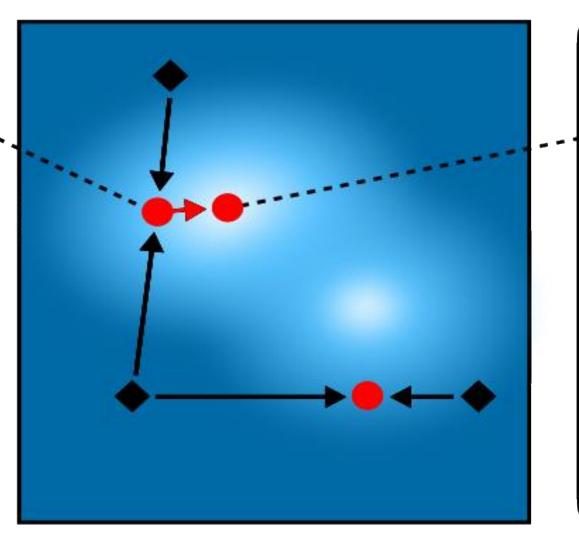
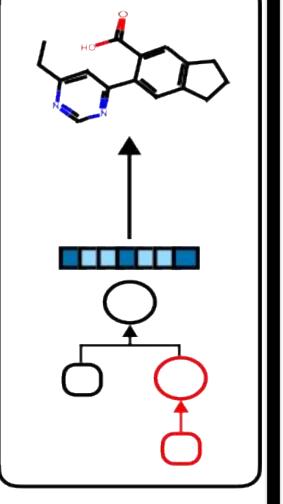

Method

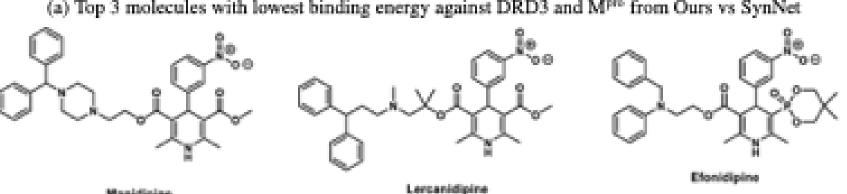
Illustration of our decoding scheme F: (Left) The input is a Morgan fingerprint x and syntax skeleton T; (Middle) Decode once for every topological ordering of the tree, tracking all partial programs with a stack; (Right) Execute all decoded programs, then returning the closest analog which minimizes distance to x.


Our Metropolis-Hastings algorithm iteratively refines the syntax tree skeleton towards the stationary


distribution which is proportional to the inverse distance to our target molecule M.


# Rxns	$ \hat{T}_{k \setminus k-1} $	# Rxns	$ \hat{T}_{k \setminus k-1} (T_{k \setminus k-1})$	# Topo. Orders (Max, Mean, Std) $\dot{\tau}_{k\setminus k-1}$
6	298	1	2(2)	2, 1.5, 0.5
6		2	6 (6)	8, 4.17, 2.79
7	243	3	22 (22)	80, 19.59, 20.55
8	112	4	83 (90)	896, 152.02, 215.53
-		5	209 (394)	19200, 2506.25, 3705.77
9	63			
10	42	# Rxns	# Topo. Masks () _{Th\u00e4\u00e40-1}	# Topo. Masks () $T_{k \setminus k-1}$
11	22	1	5, 4, 1	5, 4, 1
		2	11, 7.67, 2.56	11, 7.67, 2.56
12	11	3	26, 14.36, 5.86	26, 14.36, 5.86
13	4	4	56, 27.99, 12.47	56, 26.73, 12.78
	=	5	131, 65.07, 26.36	131, 49.74, 27.09
14	2	6	287, 165.12, 61.43	287, 92.67, 56.29

 dist



Our genetic algorithm over the joint design space combines the strategies of semantic crossover (\rightarrow) and syntactical mutation (\rightarrow) to encourage both global improvement and local exploration.

	R	esul	ts					
		Sco	re †	AUC ↑		SA ↓		
Category	Method	Value	Rank		Rank	Value	_	
Screening	Screening	0.426	20	0.377	20	3.097	8	
acteening	MolPAL	0.472	16	0.444	15	3.018	4	
	REINVENT	0.697	2	0.607	2	3.415	9	
String	REINVENT-SELFIES	0.682	3	0.578	4	3.791	1.5	
auing	STONED	0.609	8	0.555	6	5.550	24	
	smiles_lstm_hc	0.667	5	0.544	8	3.036	5	
	smiles_ga	0.548	11	0.503	10	5.422	23	
	selfies_lstm_hc	0.539	12	0.431	16	3.743	14	
	selfies_vae_bo	0.428	19	0.383	19	3.522	11	
	smiles_vae_bo	0.422	2.1	0.376	21	3.084	7	
	selfies_ga	0.48	15	0.337	23	5.709	26	
	pasithea	0.338	24	0.326	24	3.66	12	
	Graph-GA	0.701	1	0.601	3	3.982	17	
Graph	GPBO	0.642	6	0.570	5	3.954	16	
Graph	DST	0.555	10	0.479	11	4.146	20	
	mars	0.507	14	0.47	12	4.232	21	
	mimosa	0.538	13	0.463	13	4.3	22	
	gflownet	0.461	17	0.419	17	4.05	19	
	gflownet_al	0.417	22	0.387	18	4.005	18	
	jt_vae_bo	0.388	23	0.371	22	3.5	10	
	graph_mcts	0.317	25	0.28	25	3.732	13	
	moldqn	0.213	26	0.187	26	5.604	25	
	SynNet	0.578	9	0.545	7	3.075	6	
Constancia	DoG-Gen	0.634	7	0.511	9	2.793	2	
Synthesis	DoG-AE	0.460	18	0.450	14	2.857	3	
	Ours	0.670	4	0.608	1	2.739	1	

Avg. across GSK3 β , JNK3, DRD2, Median1, Median2, Rediscovery, Osimertinib, 6 others Baselines from Practical Molecular Optimization.

	SynNet DROS Top Blinders (5808 calls)		Gura DR05 Top Binders (5906 calls)		SynNat MPto Top Sinders (5000 calls)		Gum MPro Tap Binders (5006 calls)	
144-15-2 to discussion of	grian;	1st -13.7 kealiwal		1st: 43 badlewid	37°	1st: 43 krallmol	999	
Znd - 10.4 boulima	guide	2nd -13.1 loadiesd	.aaaji	2nd 4.3 hading	Zuifi.	2nd: 4.7 kmillinol		
2nd - 10,3 beatlevel	0 OH	2+4 -12.1 healined		2rd - 5.2 has/rest		Sed: -0.7 kosřmol		

(b) Top binders against M^{pro} from literature, based on consensus docking scores (Ghahremanpour et al., 2020)