

Towards Marginal Fairness Sliced Wasserstein Barycenter

Khai Nguyen*1, Hai Nguyen*2, Nhat Ho1

¹Department of Statistics and Data Sciences, University of Texas at Austin
²Qualcomm Al Research

Sliced Wasserstein Distance

Let μ, ν be two probability measures that has supports in \mathbb{R}^d , the sliced Wasserstein distance of order $p \geq 1$:

$$SW_p(\mu,
u) = \left(\mathbb{E}_{ heta \sim \mathcal{U}(S^{d-1})}\left[W_p^p(heta\sharp\mu, heta\sharp
u)
ight]
ight)^{rac{1}{p}}$$

where \mathbb{S}^{d-1} is the unit-hypersphere, the Wasserstein distance on one-dimension has the closed-form:

$$\mathbb{W}_p(\mu,
u) = \left(\int_0^1 |F_\mu^{-1}(z) - F_
u^{-1}(z)|^p \, dz
ight)^{rac{1}{p}}$$

and $\theta \sharp \mu$ denotes the pushforward probability measure of μ through the function $T_{\theta}: \mathbb{R}^d \to \mathbb{R}$ with $T_{\theta}(x) = \theta^{\top} x$, and F^{-1} denotes the inverse CDF.

Sliced Wasserstein Barycenter

For $K \geq 2$ marginals $\mu_1, \ldots, \mu_K \in \mathcal{P}_p(\mathbb{R}^d)$

$$\min_{\mu} \mathcal{F}(\mu) = \sum_{k=1}^K \omega_k \, SW_p^{\,p}(\mu,\mu_k)$$

uniform case: $\omega_1 = \cdots = \omega_K = \frac{1}{K}$

Let μ_{ϕ} be parameterized, then estimate gradient of barycenter by:

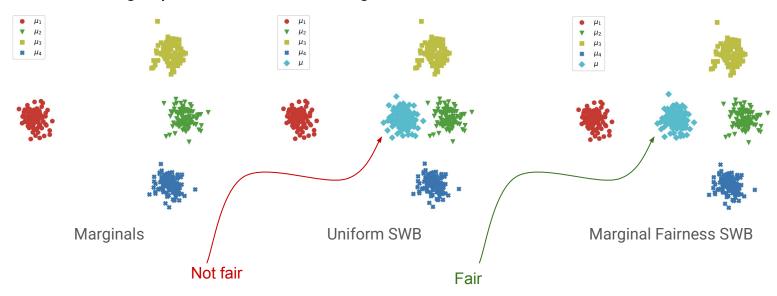
$$abla_{\phi}\mathbf{SW}_{p}^{p}(\mu_{\phi},\mu_{k}) =
abla_{\phi}\mathbb{E}_{ heta\sim\mathcal{U}(\mathbb{S}^{d-1})}\left[\mathbf{W}_{p}^{p}(heta\sharp\mu_{\phi}, heta\sharp\mu_{k})
ight] = \mathbb{E}_{ heta\sim\mathcal{U}(\mathbb{S}^{d-1})}\left[
abla_{\phi}\mathbf{W}_{p}^{p}(heta\sharp\mu_{\phi}, heta\sharp\mu_{k})
ight]$$

Monte Carlo estimator:

$$abla_{\phi} SW_p^p(\mu_{\phi},\mu_k) pprox rac{1}{L} \sum_{l=1}^L
abla_{\phi} W_p^p(heta_l \sharp \mu_{\phi}, heta_l \sharp \mu_k)$$

Motivations

Objective: Find a barycenter that minimizes the distances to marginals while having equal distances to marginals at the same time.



Marginal Fairness Sliced Wasserstein Barycenter

For $K \geq 2$ marginals $\mu_1, \ldots, \mu_K \in \mathcal{P}_p(\mathbb{R}^d)$ and admissible $\epsilon \geq 0$

$$\min_{\mu} rac{1}{K} \sum_{k=1}^K SW_p^p(\mu,\mu_k)$$

s.t. $rac{2}{(K-1)K} \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} |SW_p^p(\mu,\mu_i) - SW_p^p(\mu,\mu_j)| \leq \epsilon.$

Lagrange Multiplier: Marginal Fairness Sliced Wasserstein barycenter (MFSWB)

$$egin{aligned} \mathcal{L}(\mu,\lambda) &= rac{1}{K} \sum_{k=1}^K \mathsf{SW}_p^p(\mu,\mu_k) + \ &rac{2\lambda}{(K-1)K} \sum_{i=1}^{K-1} \sum_{j=i+1}^K |\mathsf{SW}_p^p(\mu,\mu_i) - \mathsf{SW}_p^p(\mu,\mu_j)| - \lambda\epsilon \end{aligned}$$

Marginal Fairness Sliced Wasserstein Barycenter

surrogate Marginal Fairness Sliced Wasserstein Barycenter (s-MFSWB)

$$\min_{\mu} \mathcal{SF}(\mu;\mu_{1:K}); \quad \mathcal{SF}(\mu;\mu_{1:K}) = \max_{k \in \{1,\ldots,K\}} SW_p^p(\mu,\mu_k).$$

unbiased surrogate Marginal Fairness Sliced Wasserstein Barycenter (us-MFSWB)

$$\min_{\mu} \mathcal{USF}(\mu;\mu_{1:K}); \quad \mathcal{USF}(\mu;\mu_{1:K}) = \mathbb{E}_{ heta \sim \mathcal{U}(S^{d-1})} \left[\max_{k \in \{1,\ldots,K\}} W_p^p(heta_H^{\mu_k}, heta_H^{\mu_{kk}})
ight].$$

Marginal Fairness Sliced Wasserstein Barycenter

energy-based surrogate Marginal Fairness Sliced Wasserstein Barycenter (es-MFSWB)

$$\min_{\mu} \mathcal{ESF}(\mu;\mu_{1:K}); \quad \mathcal{ESF}(\mu;\mu_{1:K}) = \mathbb{E}_{\theta \sim \sigma(\theta;\mu,\mu_{1:K})} \left[\max_{k \in \{1,\ldots,K\}} W_p^p(\theta \sharp \mu, \theta \sharp \mu_k) \right].$$
 Energy-based Slicing distribution instead of Uniform distribution

Experiments

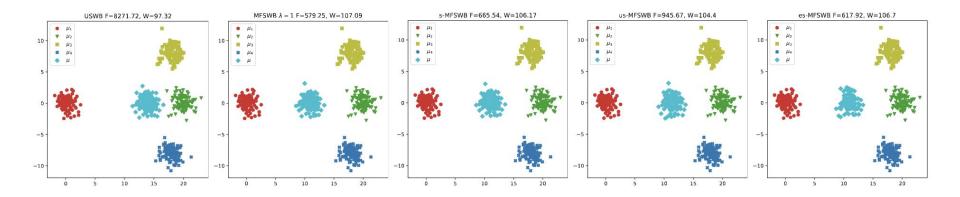
F metric: represents the marginal fairness degree of the barycenter

$$F = rac{2}{K(K-1)} \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} |W_p^p(\mu,\mu_i) - W_p^p(\mu,\mu_j)|$$

W metric: represents the centrality of the barycenter

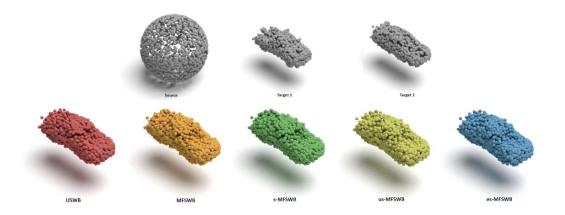
$$W=rac{1}{K}\sum_{i=1}^K W_p^p(\mu,\mu_i)$$

Experiments: Toy example barycenter of Gaussian



Experiments: 3D Point Cloud Averaging

Method	Iteration 0		Iteration 1000		Iteration 5000		Iteration 10000	
	F (\(\psi\)	W (↓)	F (\dagger)	W (↓)	F (\dagger)	W (↓)	F (\dagger)	W (↓)
USWB	252.24 ± 0.0	3746.05 ± 0.0	4.89 ± 0.28	85.72 ± 0.18	3.79 ± 0.32	45.37 ± 0.18	1.55 ± 0.48	39.81 ± 0.18
MFSWB $\lambda = 0.1$	252.24 ± 0.0	3746.05 ± 0.0	4.76 ± 0.27	84.86 ± 0.17	3.78 ± 0.2	45.2 ± 0.11	1.32 ± 0.22	39.73 ± 0.16
MFSWB $\lambda = 1$	252.24 ± 0.0	3746.05 ± 0.0	0.49 ± 0.2	79.08 ± 0.15	3.64 ± 0.26	44.71 ± 0.19	1.03 ± 0.06	39.45 ± 0.18
MFSWB $\lambda = 10$	252.24 ± 0.0	3746.05 ± 0.0	4.03 ± 2.43	$\textbf{71.24} \pm \textbf{0.9}$	7.32 ± 2.5	45.21 ± 0.2	4.13 ± 2.48	42.56 ± 0.36
s-MFSWB	252.24 ± 0.0	3746.05 ± 0.0	2.52 ± 0.77	81.84 ± 0.14	4.01 ± 0.38	44.9 ± 0.13	1.15 ± 0.09	39.58 ± 0.17
us-MFSWB	252.24 ± 0.0	3746.05 ± 0.0	0.3 ± 0.18	78.69 ± 0.17	3.74 ± 0.26	44.38 ± 0.1	0.87 ± 0.18	39.26 ± 0.1
es-MFSWB	252.24 ± 0.0	3746.05 ± 0.0	$\boldsymbol{0.2 \pm 0.19}$	78.1 ± 0.16	$\textbf{3.5} \pm \textbf{0.29}$	44.37 ± 0.08	$\boldsymbol{0.84 \pm 0.22}$	39.18 ± 0.08



Experiments: Color Harmonization

Experiments: Sliced Wasserstein Autoencoder

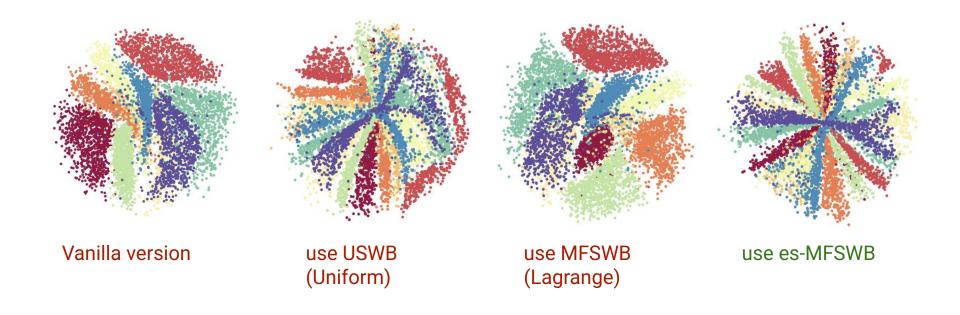
SW Autoencoder objective

New added objective

$$egin{align*} oldsymbol{ op} \min_{\phi,\psi} \mathbb{E} \left[rac{1}{KM} \sum_{k=1}^K \sum_{i=1}^M c(X_{ki}, g_{\psi}(f_{\phi}(X_{ki}))) + \kappa_1 SW_p^p \left(P_Z, P_{(f_{\phi}(X_k))_{k=1}^K}
ight)
ight. \ \left. + \kappa_2 \mathcal{B} \left(P_Z; P_{f_{\phi}(X_1)} : P_{f_{\phi}(X_K)}
ight)
ight] oldsymbol{ op} . \end{aligned}$$

Methods	RL (↓)	$W_{2,latent}^2 \times 10^2 (\downarrow)$	$W_{2,\text{image}}^2 imes 10^2 \left(\downarrow\right)$	$F \times 10^2 (\downarrow)$	$W \times 10^2 (\downarrow)$	$ F_{images}(\downarrow) $
SWAE	3.002	9.949	26.572	17.661	28.512	7.787
USWB	3.195	9.174	27.446	5.190	12.448	7.140
MFSWB $\lambda = 0.1$	2.812	8.981	26.636	17.206	28.734	7.846
MFSWB $\lambda = 1.0$	2.883	7.978	26.355	18.069	29.701	7.367
MFSWB $\lambda = 10.0$	3.801	8.497	26.658	18.501	28.768	7.950
s-MFSWB	3.170	7.806	28.277	2.037	8.699	7.419
us-MFSWB	2.833	8.720	27.939	2.072	7.780	6.898
es-MFSWB	3.056	9.154	28.012	1.760	7.268	7.485

Experiments: Sliced Wasserstein Autoencoder



Please check out the paper

Paper: https://openreview.net/pdf?id=NQqJPPCesd

Thank you for listening!

Hai Nguyen: namhai283287@gmail.com hainn@qti.qualcomm.com https://hainn2803.github.io/

currently seeking PhD opportunities. If interested, please feel free to reach out via my personal email

