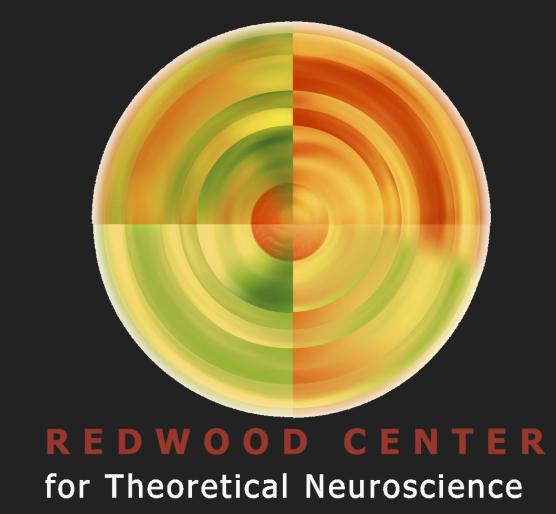
URLOST: Unsupervised Representation Learning without Stationarity or Topology

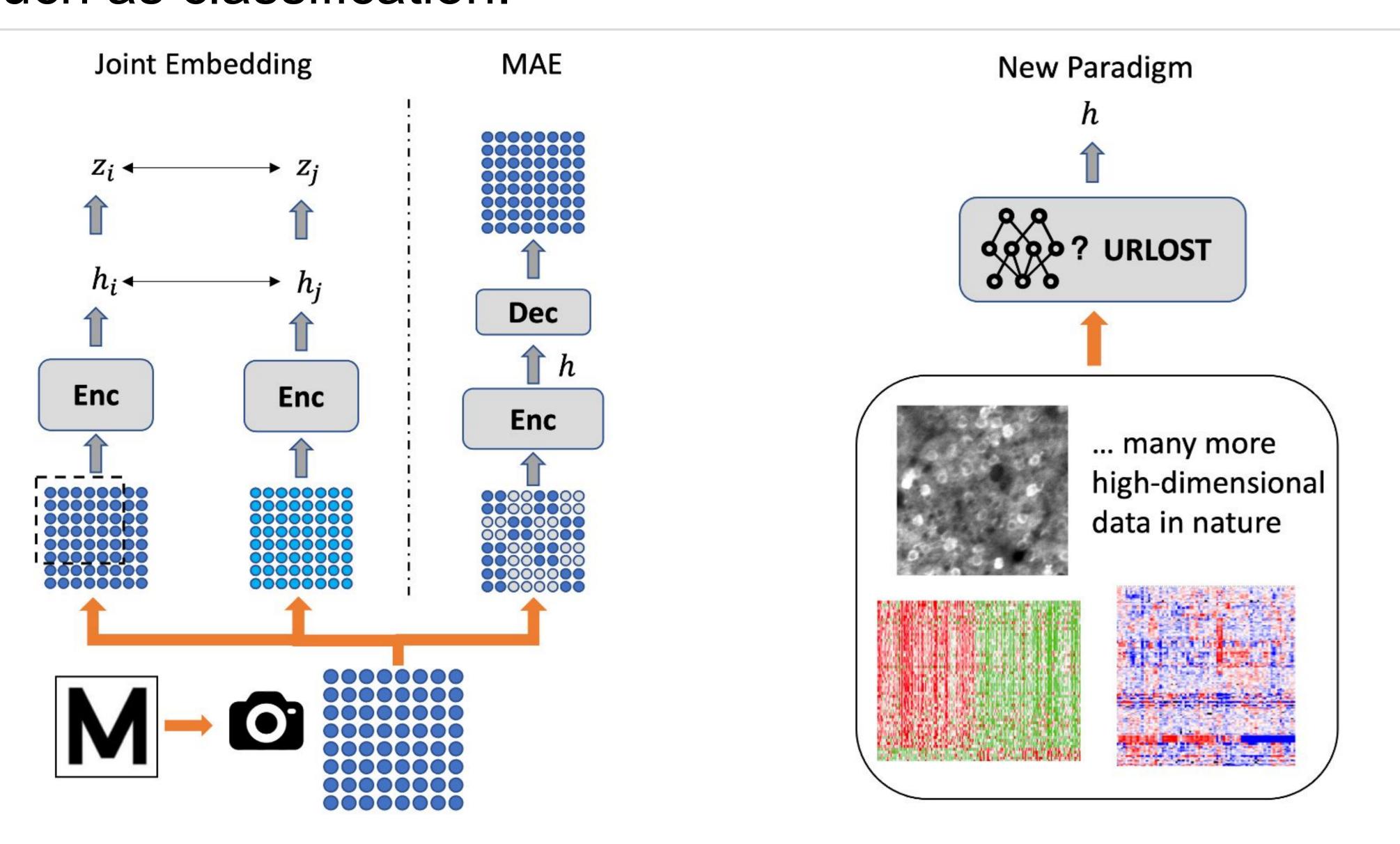
Zeyu Yun¹, Juexiao Zhang², Yann Lecun^{2,3}, Yubei Chen⁴

(1) Redwood Center for Theoretical Neuroscience, UC Berkeley (2) New York University, (3) FAIR at Meta (4) ECE Dept, UC Davis



Goal

Our objective is to build robust unsupervised representations for high-dimensional signals without prior information on explicit topology or stationarity. The learned representations are intended to enhance performance in downstream tasks such as classification.



Data w/ stationarity and topology Data w/o stationarity and topology

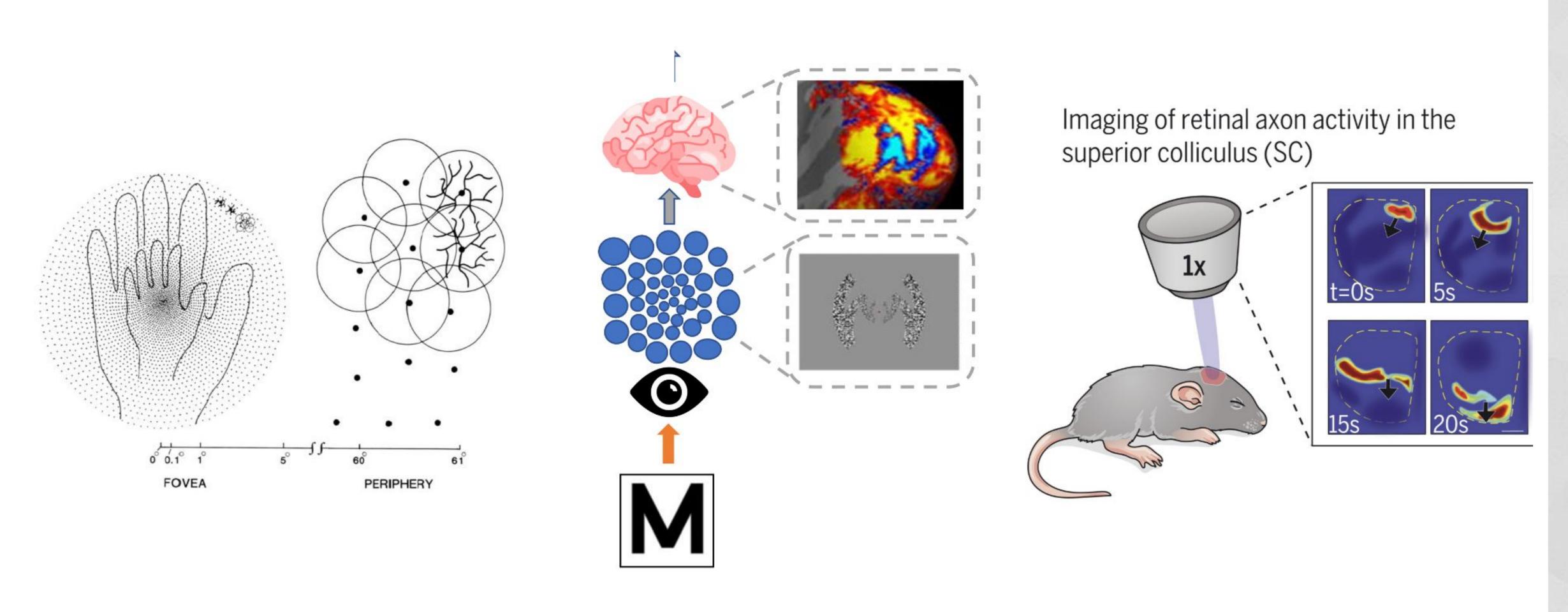
Signal Clustering Signal Enc Self-organizing layer: Spectral clustering: To process Mutual information: Given a high dimensional singal, we similar dimensions together, we Unlike shared projection layer, each patch has its group dimensions using pairwise use mutual information to define similarity between similarity and spectral clustering. own projection layer. different dimensions. Vision Transformer Shared Linear Projection Layer Standard Vision transformer Vision Transformer

Method

Masked

Motivation

Visual system process visual signal without stationarity and topology. How are they doing it? Could we borrow similar idea and build it into a machine learning system?



Irregular sensor array

Retinotopic

Retinal waves

Qualitative result

pixels clusters

Visualization of result of spectral clustering on simulated biological visual signal.

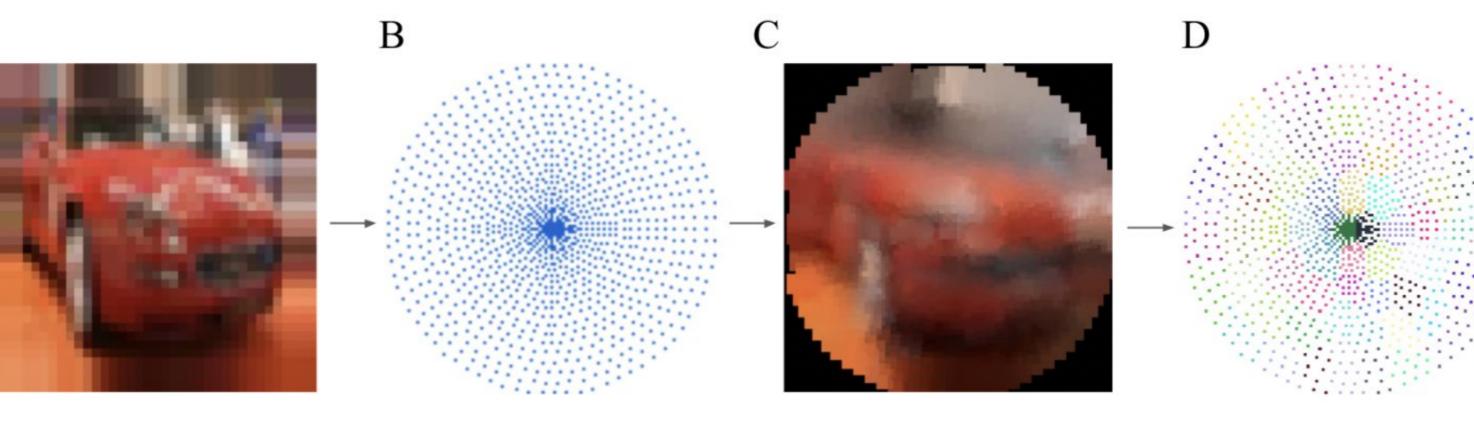
经保证证券的证据

医多种性 医多种性

建甲烷苯甲基甲烷

医医性性 医皮肤 医皮肤

建设设备的证据



Learnt weights of a self-organizing layer.

医复数性 医海绵氏病

医复数性原原 医胃炎

医复数性贫血 电电流

医医尿管性溶液性

Mutual information between pixel at

location (4,10) to all other pixels

 $E^{(1)}$

医多种性 医皮肤 医皮肤

医多数医多数医多数

医直肠 经经验的证据

医肾髓 医阴道性

cluster. (A) Each patch in the image undergoes different permutation.

(B) (C) If they learnt projection layer are undergo the same permutation, they look the same.

(A) An image in CIFAR-10 dataset. (B)

Retina sampling lattice. Each blue dot

Visualization of the car image's signal

density-adjusted spectral clustering results

are shown. Each unique color represents a

mimics a retinal ganglion cell. (C)

sampled using the retina lattice. (D)

翻譯室愁頭略尼麗廳

VIT with Self organizing layer

Re-organizing Reconstructed

Why? In a standard vision transformer, the linear projection layer should learn some filtering on input patches. If each patch is undergoes different random permutation, to align all the patches, the projection layer should learn filtering + the inverse permutation. If the projection layer for each patch indeed learn the inverse permutation, then they should looks the same if we apply the ground truth permutation on them.

Result

Table 1. Evaluation on computer vision and synthetic biological vision dataset. We create dataset where signal have no topology or stationarity. We compare the performance of URLOST with different baseline model: different neural network backbones and different unsupervised learning algorithms (MAE and simCLR).

Dataset	Method Backbone		Eval Acc
CIFAR-10	MAE ViT (Patch)		88.3 %
	MAE	ViT (Pixel)	56.7 %
	SimCLR	ResNet-18	90.7 %
	SimCLR	ViG	53.8 %
Permuted CIFAR-10	URLOST MAE	ViT (Cluster)	86.4 %
	MAE	ViT (Pixel)	56.7 %
	SimCLR	ResNet-18	47.9 %
	SimCLR	ViG	40.0 %
Foveated CIFAR-10	URLOST MAE	ViT (Cluster)	85.4 %
	MAE	ViT (Pixel)	48.5 %
	SimCLR	ResNet-18	38.0 %
	SimCLR	ViG	42.8 %

Table 2. Evaluation on computer vision and synthetic biological vision dataset. We compare the performance of URLOST with different baseline model: different neural network backbones and different unsupervised learning algorithms (normalized raw signal, MAE, β-VAE.).

Method	V1 Response Decoding Acc	TCGA Classification Acc
Raw	$73.9\% \pm 0.00 \%$	$91.7 \pm 0.24\%$
MAE	$70.6\% \pm 0.22~\%$	$90.6\% \pm 0.63\%$
β -VAE	$75.64\% \pm 0.11\%$	$94.15\% \pm 0.24\%$
URLOST MAE	78.75% \pm 0.18%	94.90% \pm 0.25%

Table 3. Ablation study 1. What if we don't cluster dimensions before doing MAE, and what if we randomly cluster dimensions?

Masking Unit	Permuted Cifar10	Foveated Cifar10	TCGA Gene	V1 Response
Clusters (URLOST)	86.4%	85.4%	94.9%	78.8%
Random patch	55.7%	51.1%	91.7%	73.9%
Individual dimension	56.7%	48.5%	88.3%	64.8%

Table 3. Ablation study 2. What if we don't use self-organizing layer? And what if we don't adjust density during spectral clustering?

Dataset	Projection	Eval Acc	Dataset	Cluster	Eval Acc
Locally-Permuted	shared	81.4 %	Foveated CIFAR-10	SC	82.7 %
CIFAR-10	non-shared	87.6 %			
Permuted	shared	80.7 %		DSC	85.4 %
CIFAR-10	non-shared	86.4 %		DSC	03.4 70

References

[1] Ge, Xinxin, et al. "Retinal waves prime visual motion detection by simulating future optic flow." Science 373.6553 (2021): eabd0830. [2] Jonathan R Polimeni, Bruce Fischl, Douglas N Greve, and Lawrence L Wald. Laminar analysis of 7t bold using an imposed spatial activation pattern in human v1. Neuroimage, 52(4):1334–1346, 2010. [3] Marius Pachitariu, Carsen Stringer, Sylvia Schroder, Mario Dipoppa, L Federico Rossi, Matteo Carandini, and Kenneth D Harris. Suite2p: beyond

10,000 neurons with standard two-photon microscopy. BioRxiv, pp. 061507, 2016. [4] Youzheng Xu, Yixin Xu, Chun Wang, Baoguo Xia, Qingling Mu, Shaohong Luan, and Jun Fan. Mining tcga database for gene expression in ovarian serous cystadenocarcinoma microenvironment. PeerJ, 9:e11375, 2021.

[5] Van Essen, David C., and Charles H. Anderson. "Information processing strategies and pathways in the primate visual system." An introduction to neural and electronic networks 2 (1995): 45-76. [6] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll'ar, and Ross Girshick. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

[7] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PmLR, [8] Xiaoyu Zhang, Yuting Xing, Kai Sun, and Yike Guo. Omiembed: A unified multi-task deep learning framework for multi-omics data. Cancers, 13(12),

[9] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020). [10] Katarzyna Tomczak, Patrycja Czerwi´nska, and Maciej Wiznerowicz. Review the can- cer genome atlas (tcga): an immeasurable source of knowledge. Contemporary Oncology/Wsp´ołczesna Onkologia, 2015(1):68–77, 2015.