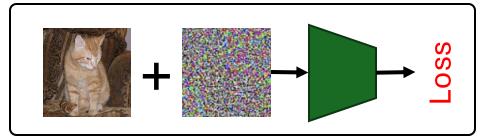


Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off

Futa Waseda ¹, Ching-Chun Chang², Isao Echizen^{1 2}

¹ The University of Tokyo, Japan

² National Institute of Information, Japan Correspondence to: Futa Waseda <futa-waseda@g.ecc.u-tokyo.ac.jp>



Robustness accuracy trade-off

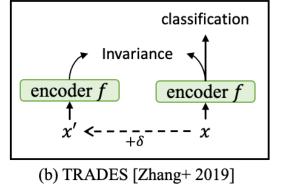
Adversarial training (AT) methods suffer from a trade-off between

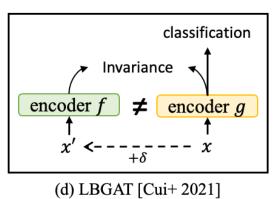
- Clean accuracy (acc. on the clean samples)
- Robust accuracy (acc. on the adversarial examples)

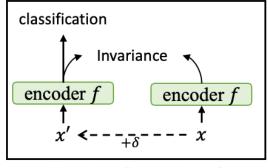
Adversarial Training (AT)

(CIFAR10,ResNet18)	Clean accuracy	Robust accuracy
Std. training	94.17	0.00
AT	82.45	50.04

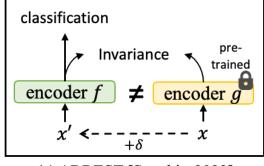
This trade-off is a huge obstacle for real-world implementation of AT methods






Invariance regularization-based Adversarial Training (AT) to mitigate robustness accuracy

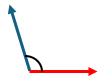
trade-off



(c) MART [Wang+ 2020]

(e) ARREST [Suzuki+ 2023]

We closely analyze the challenges of using invariance regularization in adversarial training



Proposed Method: ARAT (1) "Stop-gradient" to address gradient conflict

Issue 1

Gradient Conflict

Naïve invariance regularization:

$$\mathcal{L}_{V0} = \alpha \cdot \mathcal{L}(f_{\theta}(x'), y) + \beta \cdot \mathcal{L}(f_{\theta}(x), y) + \gamma \cdot Dist(z, z')$$

Classification

Invariance

We observed that the gradients of the **Classification** and **Invariance** losses **conflicts**, leading to suboptimal convergence.

Solution 1

Asymmetric invariance loss with "Stop-gradient" operation.

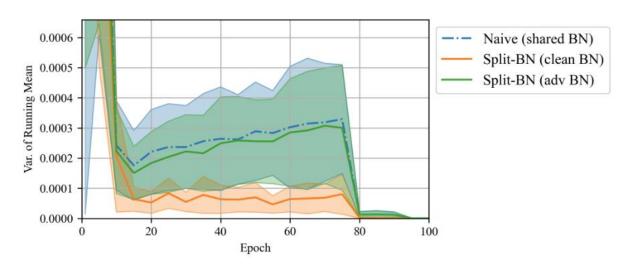
$$Dist(z',z) = \left(Dist(z',\operatorname{sg}(z)) + Dist(\operatorname{sg}(z'),z)\right)/2$$

The source of conflict! This corrupts representations.

We remove this term by applying a stop-gradient (sg) operation.

Proposed Method: ARAT (2) Split-BN to address mixture distribution problem

Issue 2


Mixture distribution problem

The model struggles to handle both adversarial and clean inputs, due to <u>large</u> <u>distribution gap.</u>

Solution 2

Use separate batch normalizations (Split-BN) for adv. and clean inputs.

With Split-BN, the model can properly handle both adversarial and clean inputs by normalizing them with different batch statistics, improving training stability.

ARAT effectively addresses the issues improving robustness-accuracy trade-off

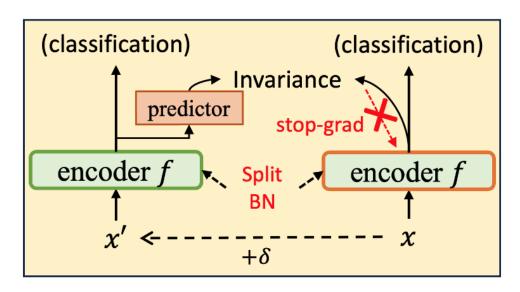
- ARAT resolves
 - (1) Gradient conflict with Stop-grad
 - (2) Mixture distribution problem with Split-BN

Robust
acc.

(classification)	(classification)	
predictor stop-	7	
encoder f Split	encoder f	
BN	†	
$x' \leftarrow+\delta$	x	

		Stop-grad	Split-BN	Clean	AA	Grad-sim.
CIFAR10	ResNet-18			82.93	46.50	0.06
		\checkmark		82.47	45.21	0.68
			\checkmark	<u>84.35</u>	<u>47.96</u>	0.14
		\checkmark	\checkmark	85.51	49.30	0.59
	WRN-34-10			86.25	41.17	0.03
		\checkmark		86.60	42.04	0.31
			\checkmark	<u>87.13</u>	<u>47.31</u>	0.01
		✓	✓	88.27	47.98	0.23

ARAT (ours)



Conclusion

- We find two key issues in the invariance regularization-based AT methods.
 - (1) Gradient conflict, and (2) Mixture distribution problem
- We introduce a novel approach to achieve better robustness accuracy trade-off.

	Defense	CIFAR10		
		Clean	AA	Sum.
ResNet-18	AT	83.77	42.42	126.19
	TRADES	81.25	48.54	129.79
	MART	82.15	47.83	129.98
	LBGAT	85.00 ± 0.47	48.85 ± 0.46	$133.86\pm{\scriptstyle 0.65}$
	ARREST*	86.63	46.14	132.77
	AR-AT (ours)	$\textbf{87.82} \pm \textbf{0.19}$	49.02 ± 0.47	$\textbf{136.84} \pm \textbf{0.33}$
	AR-AT+SWA (ours)	86.44 ± 0.05	50.28 ± 0.14	136.72 ± 0.19

ARAT (ours)

Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off

Futa Waseda ¹, Ching-Chun Chang², Isao Echizen¹ ²

¹ The University of Tokyo, Japan

² National Institute of Information, Japan Correspondence to: Futa Waseda <futa-waseda@g.ecc.u-tokyo.ac.jp>