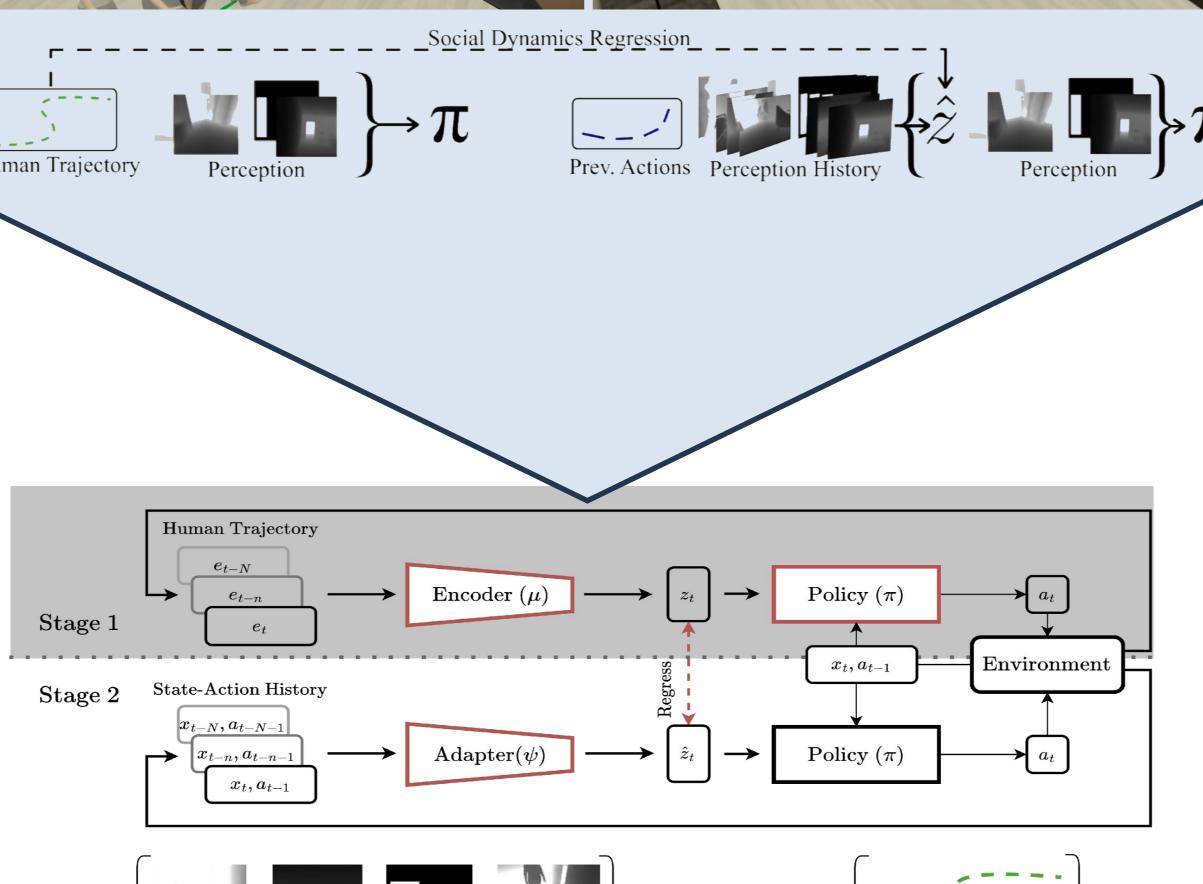

Objective: Build a model allowing an agent to adapt to human movements in shared environments, approaching to assist when needed and stepping back to avoid collisions.

Core Idea: Infer social dynamics from the agent's past actions and states, without relying on hard-to-obtain privileged information.

Social Dynamics Adaptation

We introduce Social Dynamics Adaptation (SDA): a two-stage reinforcement learning framework enabling robots to adapt to human movement.

- Stage 1: the model learns a latent representation of social dynamics from fully observable human trajectories (privileged information) to condition robot navigation.
- **Stage 2:** SDA infers social dynamics solely from the robot's past actions and states, allowing real-time adaptation without external (privileged) trajectory data.


Acknowledgements. We are grateful to Panasonic for partially supporting this work. We acknowledge the financial support from the PNRR MUR project PE0000013-FAIR and from the Sapienza grant RG123188B3EF6A80 (CENTS). Thanks CINECA and the ISCRA initiative for high-performance computing resources and support.

Luca Scofano^{1*}, Alessio Sampieri^{1,4*}, Tommaso Campari^{2*}, Valentino Sacco^{1*}, Indro Spinelli¹, Lamberto Ballan³, Fabio Galasso¹

¹Sapienza University of Rome, ²Fondazione Bruno Kessler,

³University of Padova, ⁴ItalAI

 $[e_{t-N},\ldots,e_t] =$

Results

The SDA model was evaluated on the Habitat 3.0 simulator, showing state-of-the-art performance in finding and following humans:

- Success (S): Increased from 76% to 91%. (+15%)
- Standardized Path Success (SPS): Improved from 0.34 to 0.45. (+11%)
- Following Success (F): Increased from 0.29 to 0.39. (+10%)

Habitat 3.0

Models	hGPS	traj.	S ↑	SPS ↑	F↑	CR↓	ES ↑
Heuristic Expert	-	-	1.00	0.97	0.51	0.52	-
Baseline	GT		$0.97^{\pm0.00}$	$0.65^{\pm0.00}$	$0.44^{\pm0.01}$	$0.51^{\pm0.03}$	$0.55^{\pm0.01}*$
Baseline+Proximity	GT		$0.97^{\pm0.01}$	$0.64^{\pm0.00}$	$0.57^{\pm0.01}$	$0.58^{\pm0.03}$	$0.63^{\pm0.02}$
SDA - S1		GT	$0.92^{\pm0.00}$	$0.46^{\pm0.01}$	$0.44^{\pm0.02}$	$0.61^{\pm0.02}$	$0.50^{\pm0.01}$
Baseline			$0.76^{\pm0.02}$	$0.34^{\pm0.01}$	$0.29^{\pm0.01}$	0.48 ^{±0.03}	$0.40^{\pm0.02}*$
Baseline+Proximity			$0.85^{\pm0.02}$	$0.41^{\pm0.02}$	$0.37^{\pm0.01}$	$0.58^{\pm0.02}$	$0.41^{\pm0.01}$
SDA - S2		1	$0.91^{\pm0.01}$	$0.45^{\pm0.01}$	0.39 ^{±0.01}	$0.57^{\pm0.02}$	$0.43^{\pm0.02}$

Towards Real World Scenarios

Update Rate	10000000	SPS ↑	F↑	CR↓	ES ↑
1 (Proposed)					
1/2		$0.39^{\pm0.01}$			
1/100	$0.85^{\pm0.01}$	$0.38^{\pm0.01}$	$0.43^{\pm0.01}$	$0.64^{\pm0.03}$	$0.46^{\pm0.01}$

SDA performance considering missing readers

SDA	S↑	SPS ↑	F↑	CR↓	ES ↑
				$0.57^{\pm0.02}$	
Habitat $3.0 + ORCA$	$0.90^{\pm0.01}$	$0.43^{\pm0.02}$	$0.38^{\pm0.01}$	$0.37^{\pm0.01}$	$0.48^{\pm0.01}$

Comparison of SDA versus the variant with ORCA

Key Contributions

Innovative Social Inference: Introduces the novel SDA framework, enabling robots to infer social cues from their own past actions and states.

Dual-Phase Learning: Employs a two-stage RL approach: first building a latent representation of human movement, then adapting it in real time.

Enhanced Navigation: Evaluated on Habitat 3.0, SDA significantly improves the robot's ability to detect and follow humans.