

BEHAVIORAL ENTROPY-GUIDED DATASET GENERATION FOR OFFLINE REINFORCEMENT LEARNING

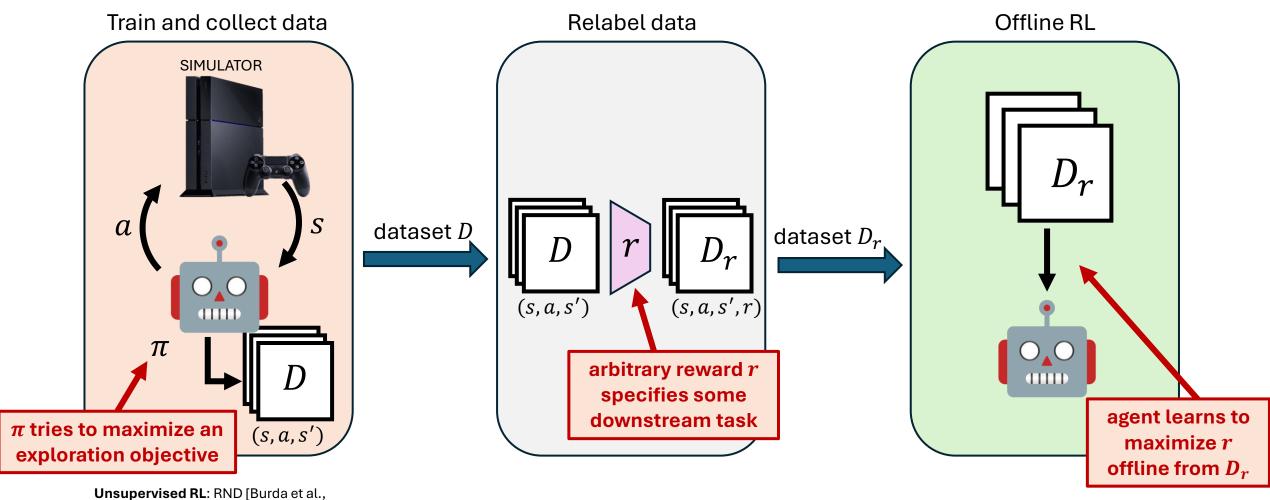
Wesley A. Suttle*, **Aamodh Suresh***, Carlos Nieto-Granda

***Equal contribution**

ICLR 2025 Singapore, Thu 24 Apr 3 p.m

DEVCOM U.S. Army Research Laboratory Adelphi, MD, 20783, USA

Background: Exploratory data generation for offline RL

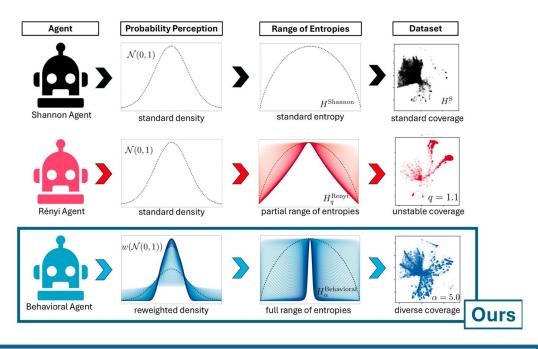


Unsupervised RL: RND [Burda et al., ICLR 2019], SMM [Lee et al., 2019], APT [Liu & Abbeel, NeurIPS 2021]

ExORL framework: [Yarats et al., ICLR 2022 Workshop on Generalizable Policy Learning in the Physical World]

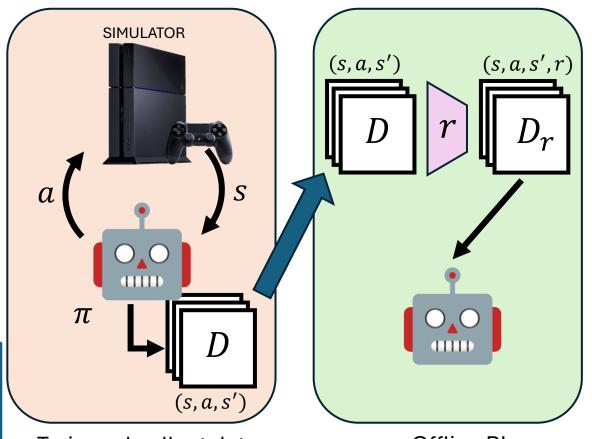
Offline RL: very well-developed; see surveys [Levine et al., 2020], [Prudencio et al., 2023]

Our work: new exploration objectives



Main Idea:

- Reweight probabilities using Behavioral economics certified functions
- Devolop most general entropy to evaluate coverage
- Wider range of exploration policies
- Better coverage and eventual Offline RL performance



Train and collect data

Unsupervised RL: RND [Burda et al., ICLR 2019], SMM [Lee et al., 2019], APT [Liu & Abbeel, NeurIPS 2021]

Offline RL

Offline RL: see surveys [Levine et al., 2020], [Prudencio et al., 2023]

Our work: new exploration objectives

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 9, SEPTEMBER 2024

Robotic Exploration Using Generalized Behavioral Entropy

Aamodh Suresh . Member, IEEE, Carlos Nieto-Granda . and Sonia Martínez . Fellow, IEEE

Abstract—This letter presents and evaluates a novel strategy for humans perceive uncertainty in a fundamentally non-rational robotic exploration that leverages human models of uncertainty manner [2], [3], [4], especially in sensory perception and evalu-

nd decision

perception. To do this, w we term "Behavioral ent Idea: use behavioral entropies from weighting from Behav operator is an admissil retical properties and co [Suresh et al., 2024] as exploration such as Shannon's and new formulation is mo objectives for π , see how offline RL sensitivity and perceptiv we use Behavioral entro does on BE datasets that can guide a frontie The approach's benefits

Worthog robot We show that the robot equipped with Rehavioral

uture. Then, - loration es the cyclic onment and

characterize

entropy that

ion [2] that

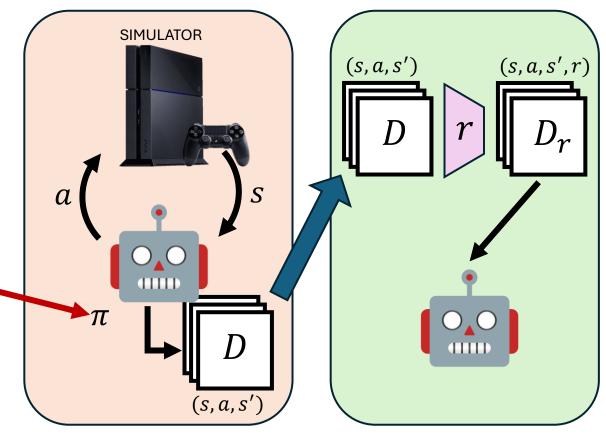
8011

erest (AOIs) policies to

Challenges:

Concept and ROS-Unity

- extension of BE to continuous spaces
- Continuous BF estimators
- RL algorithm development



Train and collect data

Unsupervised RL: RND [Burda et al., ICLR 2019], SMM [Lee et al., 2019], APT [Liu & Abbeel, NeurIPS 20211

Offline RL

Offline RL: see surveys [Levine et al., 2020], [Prudencio et al., 2023]

Contributions

Published as a conference paper at ICLR 2025

BEHAVIORAL ENTROPY-GUIDED DATASET GENERA-TION FOR OFFLINE REINFORCEMENT LEARNING

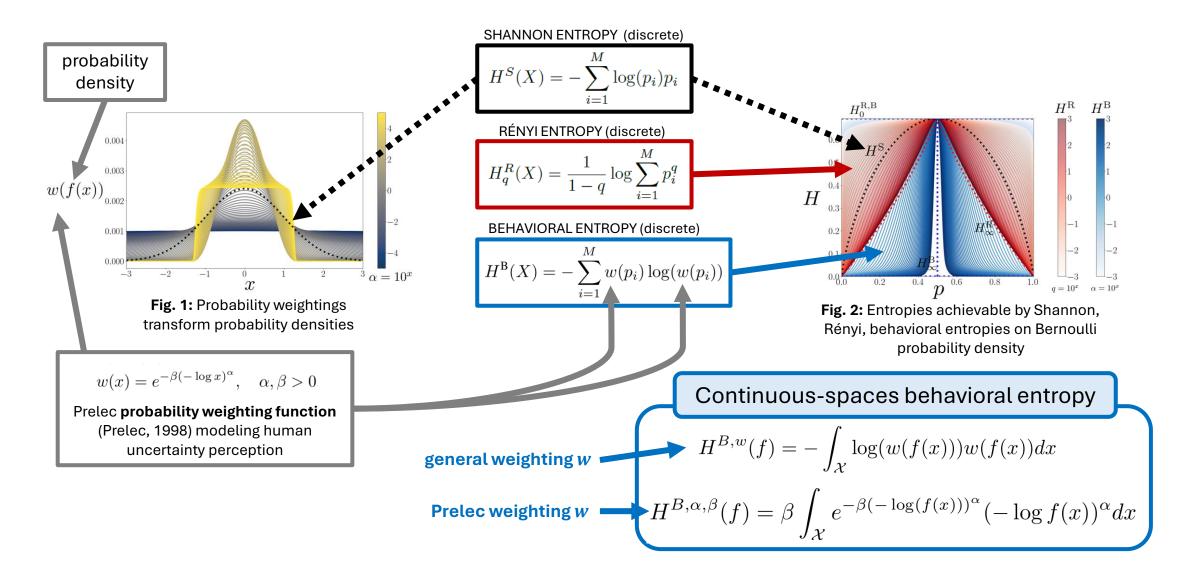
Wesley A. Suttle*, Aamodh Suresh*, Carlos Nieto-Granda U.S. Army Research Laboratory Adelphi, MD 20783, USA wesley.a.suttle.ctr@army.mil, aamodh@gmail.com, carlos.p.nieto2.civ@army.mil

ABSTRACT

Entropy-based objectives are widely used to perform state space exploration in reinforcement learning (RL) and dataset generation for offline RL. Behavioral entropy (BE), a rigorous generalization of classical entropies that incorporates cognitive and perceptual biases of agents, was recently proposed for discrete settings and shown to be a promising metric for robotic exploration problems. In this work, we propose using BE as a principled exploration objective for systematically generating datasets that provide diverse state space coverage in complex, continuous, potentially high-dimensional domains. To achieve this, we extend the notion of BE to continuous settings, derive tractable k-nearest neighbor estimators, provide theoretical guarantees for these estimators, and develop practical reward functions that can be used with standard RL methods to learn BE-maximizing policies. Using standard MuJoCo environments, we experimentally compare the performance of offline RL algorithms for a variety of downstream tasks on datasets generated using BE, Rényi, and Shannon entropy-maximizing policies, as well as the SMM and RND algorithms. We find that offline PL algorithms trained on datasets col-

- Extension of BE from [Suresh et al., 2024] to continuous spaces
- Developed and analyzed k-nearest neighbor (k-NN) BE estimators
- k-NN-based RL reward for BE
- Experiments demonstrating promising performance on BEgenerated datasets

Behavioral entropy for continuous spaces



k-nearest neighbor estimators, RL reward

k-NN entropy estimator formulation

$$X_1, X_2, \dots, X_n \sim f(\cdot)$$
 distance from k th NN $R_{k,n}(x) = \|x - NN_k(x)\|_2$

$$\hat{f}(x) = \frac{k\Gamma(d/2+1)}{n\pi^{d/2}R_{k,n}^d(x)}$$
 density estimator behavioral entropy

density estimator

estimator for general w

$$\widehat{H}_{k,n}^{B,w}(f) = -\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\widehat{f}(X_i)} w(\widehat{f}(X_i)) \log w(\widehat{f}(X_i))$$

k-NN estimator analysis

Theorem 1. Under suitable conditions on k, n, w, and f, we have $\widehat{H}_{k,n}^{B,w}(f) \to H^{B,w}(f)$ both uniformly and in probability.

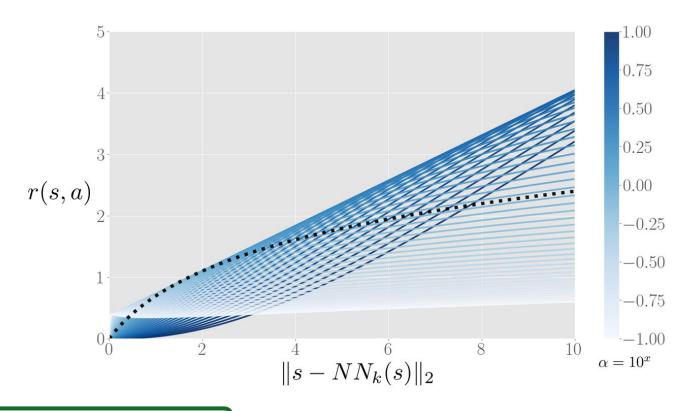
Theorem 2. Under suitable conditions on the density f and for fixed k, k-NN estimators of density functionals approximate their target functionals up to

$$O\left(\left(\frac{k}{n}\right)^{\frac{1}{d}} + \frac{1}{\sqrt{k}}\right).$$

k-NN-based RL reward

$$r(s, a) = \|s - NN_k(s)\|_2 e^{-\beta(\log(\|s - NN_k(s)\|_2 + c))^{\alpha}} \left(\log(\|s - NN_k(s)\|_2 + c)\right)^{\alpha}$$

k-nearest neighbor estimators, RL reward



k-NN-based RL reward

$$r(s, a) = \|s - NN_k(s)\|_2 e^{-\beta(\log(\|s - NN_k(s)\|_2 + c))^{\alpha}} \left(\log(\|s - NN_k(s)\|_2 + c)\right)^{\alpha}$$

Experimental setup and summary

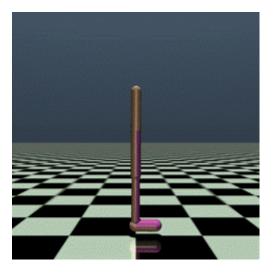
Domains: Walker, Quadruped

- Tasks: Stand (on Walker only), Walk (both), Run (both)
- Data generation algorithms:
 - ICM-APT (Shannon), RND, SMM
 - ICM-APT (Rényi) for range of q
 - ICM-APT (BE) for range of α
- Offline RL evaluation methods:
 - TD3, CQL, CRR
- 500k data generation steps
- 100k offline RL training steps
- Evaluation every 10k steps

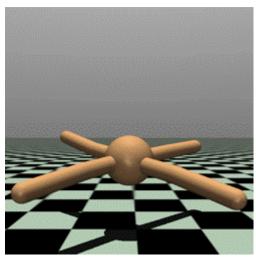
Table 1: Max performance over all offline RL algorithms and all trials

Environment	Task	BE	RE	SE	RND	SMM
Walker	Stand	990.38	988.93	954.93	947.89	496.09
	Walk	904.66	878.20	895.89	735.77	409.46
	Run	385.07	440.53	360.64	341.03	140.29
Quadruped	Walk	845.31	776.64	755.79	699.22	425.11
	Run	522.32	490.75	490.46	490.66	275.38

Walker



Quadruped



State Coverage using PHATE for Walker Domain

