

Data-centric Prediction Explanation via Kernelized Stein Discrepancy

ICLR 2025

Mahtab Sarvmaili, Hassan Sajjad, Ga Wu Faculty of Computer Science, Dalhousie University

April, 2025

Data-centric, Post hoc prediction explanation

- Explaining models prediction
 - focusing on data quality, patterns, and examples rather than internal model mechanics
 - without accessing the model training dynamic
- Shifts the focus from
 - From "what are the internal processing of the model?"
 - To "How the model learn the data and what is the correlation between samples?"
- Emphasizes training data and its impact on predictions.

Data-centric, Post hoc prediction explanation pt.2

 Generally, is done by constructing the influence chain between training and test data

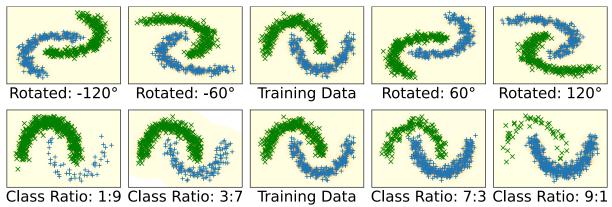
Method	Explanation of	Need optimization as sub-routine	Whole model explanation		Inference computation	Memory/cache (of each
Wicollod			Theoretical	Practical	complexity bounded by	training sample) bounded by
Influence		Yes (Iterative HVP			$1.H_{\theta}^{-1}\nabla_{\theta}L(\mathbf{x}_{t},\theta)$ approximation	
Function	Original Model	approximation)	Yes	No	2. $<\nabla_{\theta}L(\mathbf{x},\theta), H_{\theta}^{-1}\nabla_{\theta}L(\mathbf{x}_{t},\theta)>$	Size of model parameters
		Yes (L2 regularized			1.last layer representation \mathbf{f}_t	Size of model parameters
RPS	Fine-tuned Model	last layer retrain)	No	No	$ 2. < \alpha_i \mathbf{f}_i, \mathbf{f}_t >$	of the last layer
					$1.\nabla_{\theta}L(\mathbf{x}_t,\theta)$ approximation	
TracIn*	Original Model	No	Yes	No	2. $<\nabla_{\theta}L(\mathbf{x},\theta), \nabla_{\theta}L(\mathbf{x}_t,\theta)>$	Size of model parameters
					$1.\nabla_{\mathbf{x}_t} f(\mathbf{x}_t, \theta)_{y_t}$ 2. Closed-form	
HD-Explain	Original Model	No	Yes	Yes	$k_{\theta}(\mathbf{x}, \mathbf{x}_t)$ defined by KSD	Size of data dimension

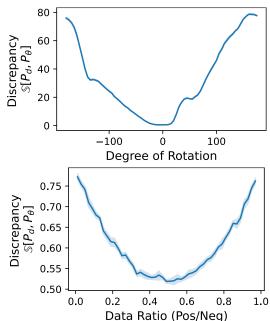
Highly Precise and Data-Centric Explanation (HD-Explain)

- Treating the model as the estimator of data distribution
- Understanding the correlation between samples conditioned on the model
- Retaining the influence chain using Kernelized Stein Discrepancy (KSD)
- Exploiting this probability distance measure to obtain sample correlation

KSD between model and data

- KSD between training data and augmented data
 - Rotation
 - Density change





Kernelized Stein Discrepancy (KSD)

• Stein Identity for a smooth distribution p(x) and function $\phi(x)$

$$\mathbb{E}_{x \sim p}[\phi(x)\nabla_x \log p(x) + \nabla_x \phi(x)] = 0$$

Stein Identity characterizes the p(x) by stein operator A_p

$$A_p \phi(x) = \phi(x) \nabla_x \log p(x) + \nabla_x \phi(x)$$

Stein Discrepancy to measure the distance between two distributions

$$\sqrt{\mathbb{S}(p,q)} = \max_{\phi \in F} \mathbb{E}_{x \sim q} [A_p \phi(x)]$$

Limiting the F to be the unit ball of Reproducing Hilbert Kernel Space

$$\mathsf{KSD}^* = \mathbb{S}(p,q) = \mathbb{E}_{x,x' \sim q} \left[\kappa_p \phi(x) \right] = \left[A_p^x A_p^{x'} k(x,x') \right]$$

KSD between model and data

- A trained classifier to maximize the log likelihood of data
 - o minimizes its KL-distance to the data distribution
 - Learns the data distribution



KSD between model and training data

$$\mathbb{S}(p,q) = \mathbb{E}_{x,x' \sim q} \left[\kappa_p \phi(x) \right] = \left[A_p^x A_p^{x'} k(x,x') \right]$$

• Considering the uniform data distribution and relaxing the score function calculation

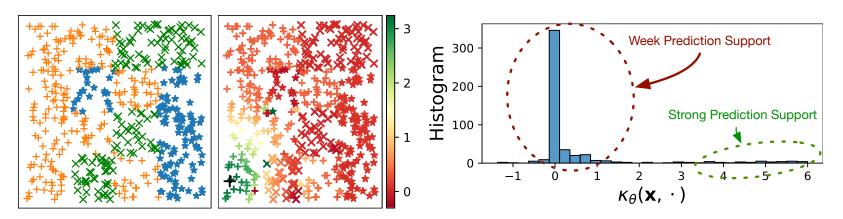
$$\nabla_{x,y} \log P_{\theta}(x,y) = \left[\nabla_x \log f_{\theta}(x)_y \left| \left| \log f_{\theta}(x) \right| \right] \right]$$

KSD between model and data

- A trained classifier $f_{\theta} \sim \operatorname{argmax} \mathbb{E}_{(x,y) \sim P_D} [\log P_{\theta}(y|x)]$
- KSD only models the discrepancy between joint distributions rather than conditional distributions
- Relaxing the discrepancy measure by considering the uniform data distribution
- Correlation of any pairs of test data with training data
 - Predicting the label
 - Constructing the data point (x_t, \hat{y}_t)
 - Apply KSD function
 - Select the top k-th samples

HD-Explain pt.2

- Correlation of any pairs of training data condition on data
 - Calculating the Stein Kernels for every pair
 - Sorting the values from the highest to lowest
 - Selecting the top samples



Experimental Results

Evaluation and analysis

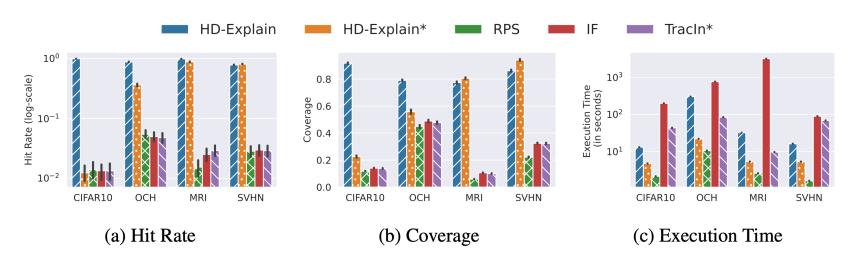
- Metrics
 - Hit Rate
 - Coverage
 - Run time
- Quantitative Evaluation
 - Noise Injection $x_t = x_i + \varepsilon$ s.t. $\varepsilon \sim \mathcal{N}(0, 0.01\sigma)$
 - Horizontal Flip $x_t = \text{flip}(x_i)$
- HD-Explain* is variant of HD-Explain that reduces the computation

Qualitative analysis



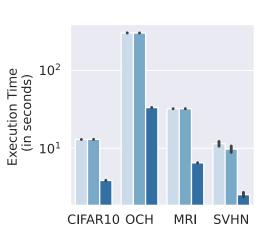
Quantitative analysis

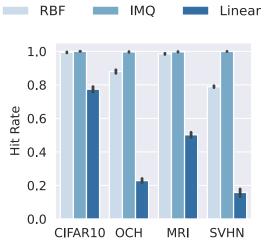
Noise injection

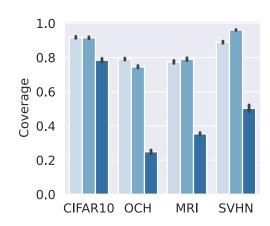


Quantitative analysis pt.2

Choice of Kernel







Conclusion

- A novel Kernel Stein Discrepancy-driven example-based prediction explanation method.
- Outperforms three baseline methods across **three datasets** in both qualitative and quantitative assessments.
- Provides accurate and effective explanations at granular levels.
 - 1. **Flexibility**: Applicable to any layer of interest in a model.
 - 2. **Analysis Across Layers**: Enables tracking the evolution of predictions across layers.
 - Retrieve the diverse and high coverage explanations for test data

Thanks for your attention!