

Ranking-Aware Adapter for Text-Driven Image Ordering with CLIP

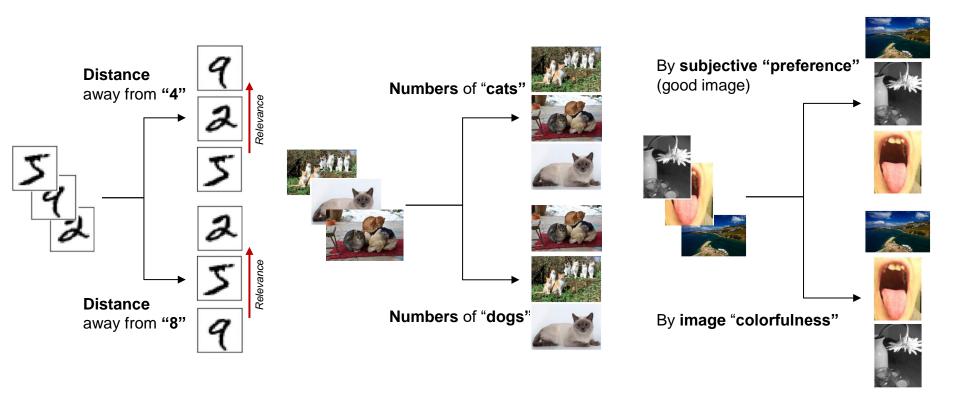
Wei-Hsiang Yu¹ Yen-Yu Lin¹ Ming-Hsuan Yang² Yi-Hsuan Tsai³

¹National Yang Ming Chiao Tung University ²UC Merced ³Atmanity Inc.

Ranking-Aware Adapter for Text-Driven Image Ordering with CLIP

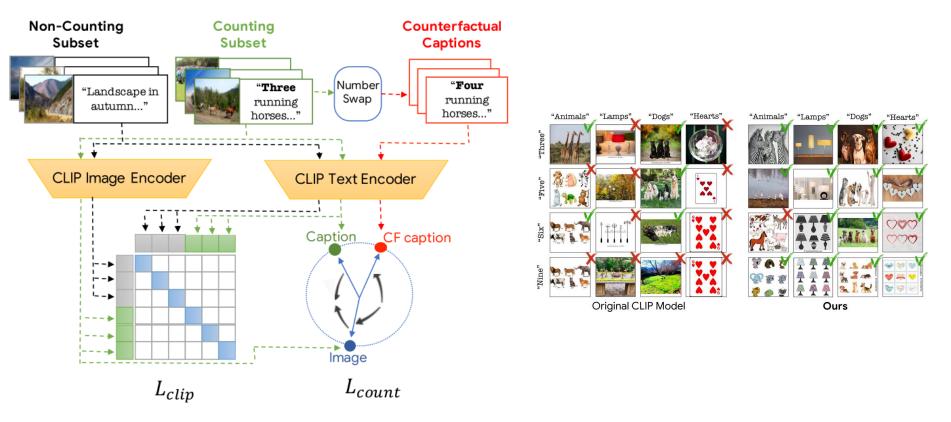
Problem formulation

Arrange a set of images according to user requirements.



Previous efforts to text-driven image ordering

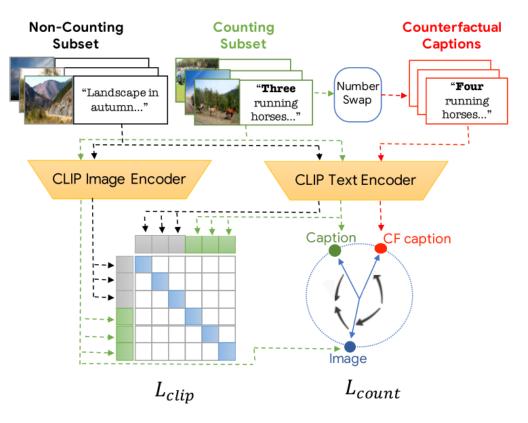
- Re-align "Number" to image using contrastive learning



Teach CLIP to Count to Ten, ICCV'23

Previous efforts to text-driven image ordering

- Re-align "Number" to image using contrastive learning

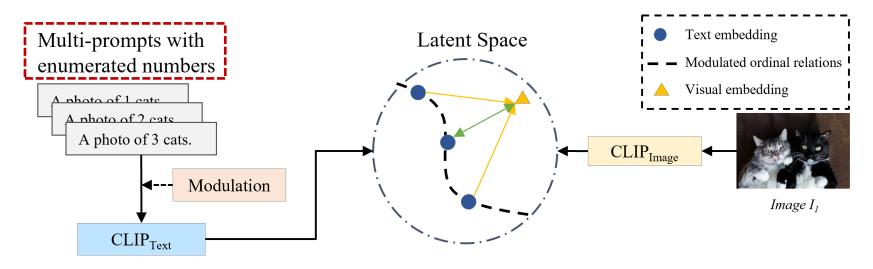


Values span a wide range? (e.g., facial age)

Continuous and subjective values? (e.g., image contrast, image aesthetics, etc.)

Motivation 1 – Contrastive learning with enumerated numbers

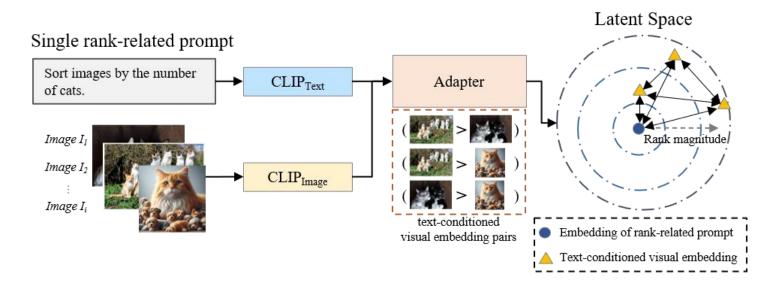
- Existing methods focus on aligning numerical text prompts to the image
 - Difficult to handle continuous values spanning a wide range binning
 - Requires to enumerate all attribute-value combinations inefficient



Concept of prior works

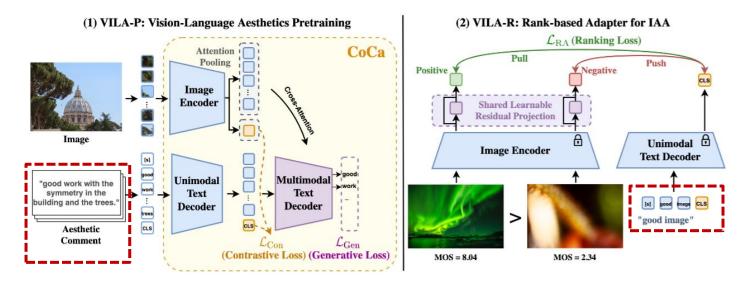
Idea – Single rank-related prompt with image pairs

- Introduce a "single rank-related prompt" The attribute used to sort images.
- Generate text-conditioned image embedding pairs and supervise using their numerical order with a learning-to-rank framework.



Motivation 2 – Learning-to-Rank in Visual-Text Alignment

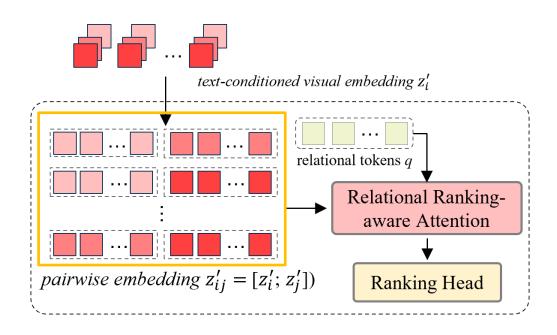
- Existing methods pretrain the text encoder on a task-specific dataset and then use a learning-to-rank framework to align images to specific attributes.
 - Requires fine-tuning the text encoder on a specific dataset (e.g., aesthetic comment).



"VILA", CVPR'23

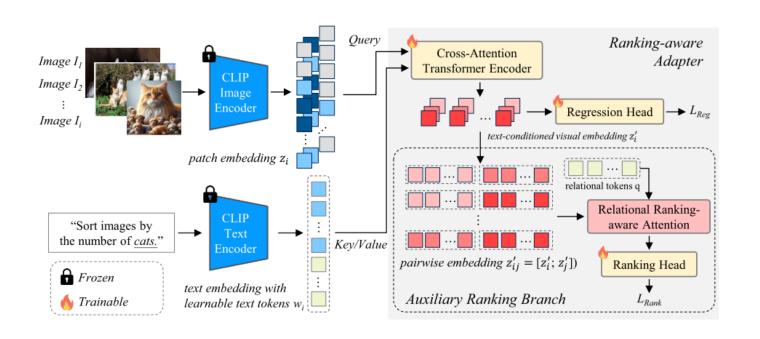
Idea – Learning from text-conditioned visual distinctions

- - Design a relational ranking-aware attention module to extract the text-conditioned visual distinctions



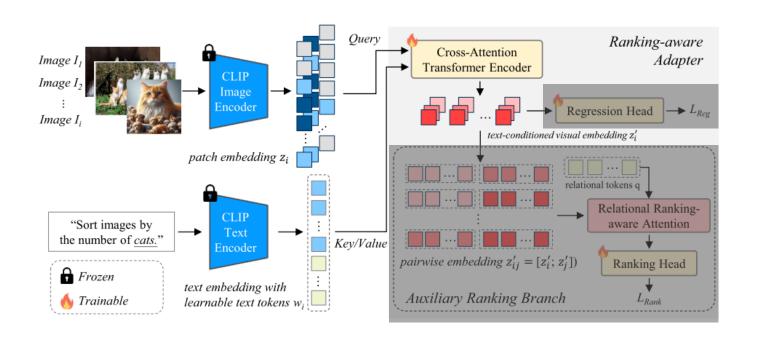
Our Approach

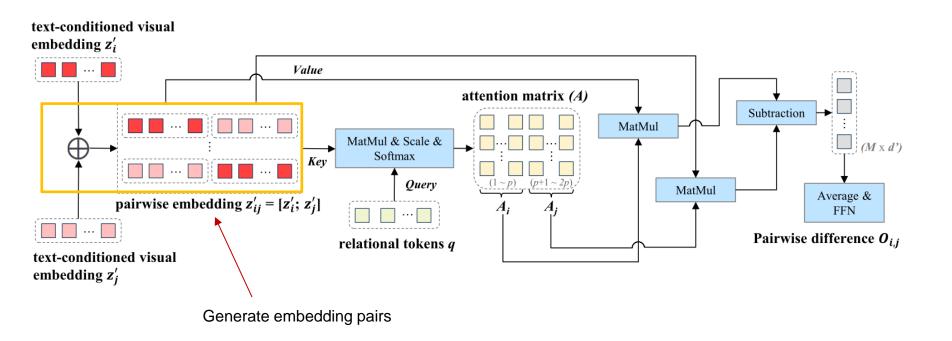
- Ranking-Aware Adapter for Text-Driven Image Ordering with CLIP

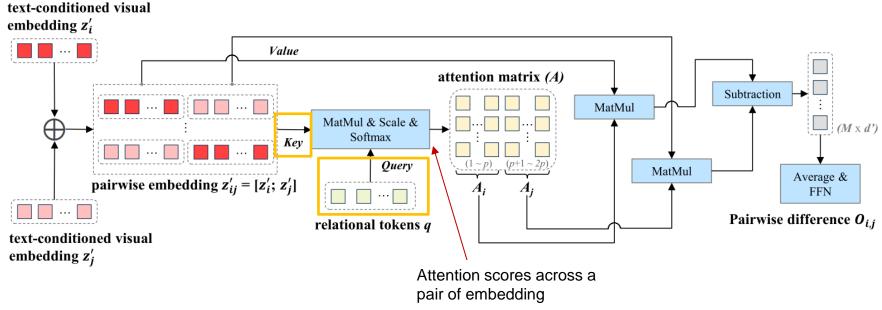


Our Approach

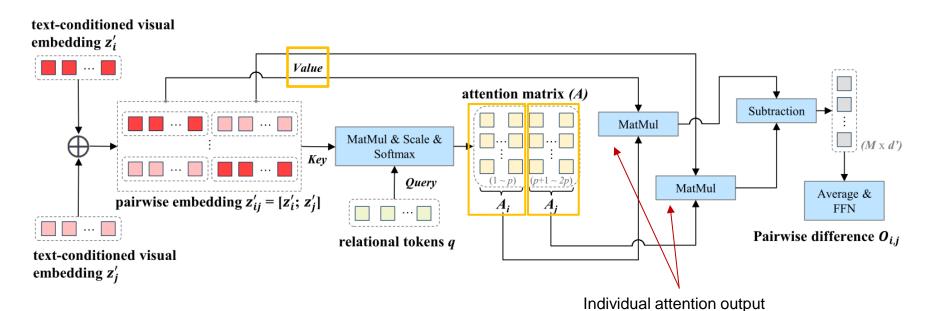
- Ranking-Aware Adapter for Text-Driven Image Ordering with CLIP



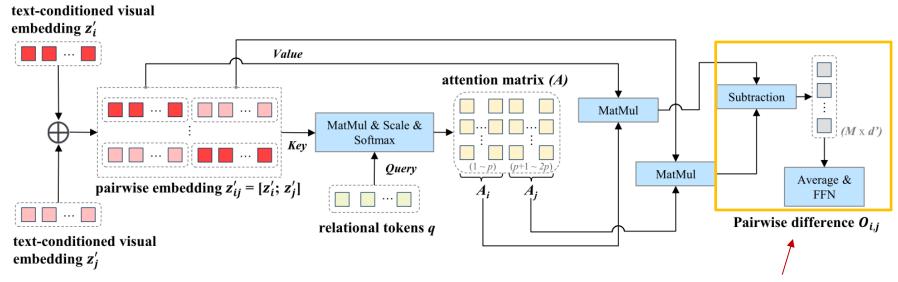




$$A = \operatorname{Softmax}(\frac{q \cdot (k_i \oplus k_j)^T}{\sqrt{d'}}) = \operatorname{Softmax}(\frac{q \cdot K^T}{\sqrt{d'}})$$



$$O_i = A_i \cdot V_i$$
 and $O_j = A_j \cdot V_j$.

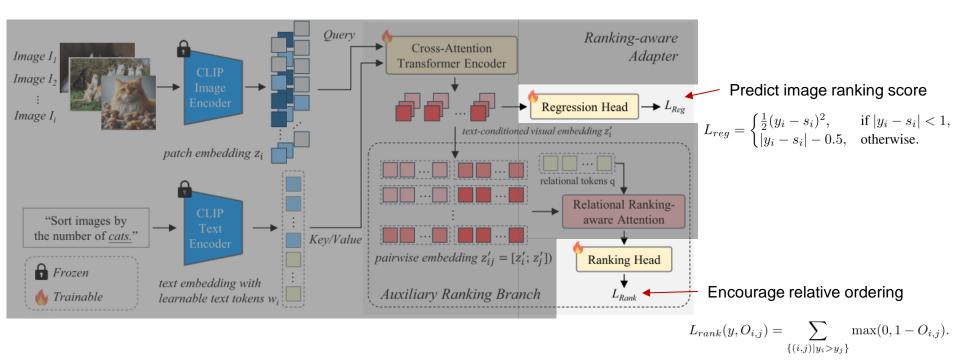


Enforce the relative difference

$$O_{i,j} = FFN(\frac{\sum_{m=1}^{M} (O_{i,m} - O_{j,m})}{M})$$

Our Approach

- Ranking-Aware Adapter for Text-Driven Image Ordering with CLIP



Experiment Settings

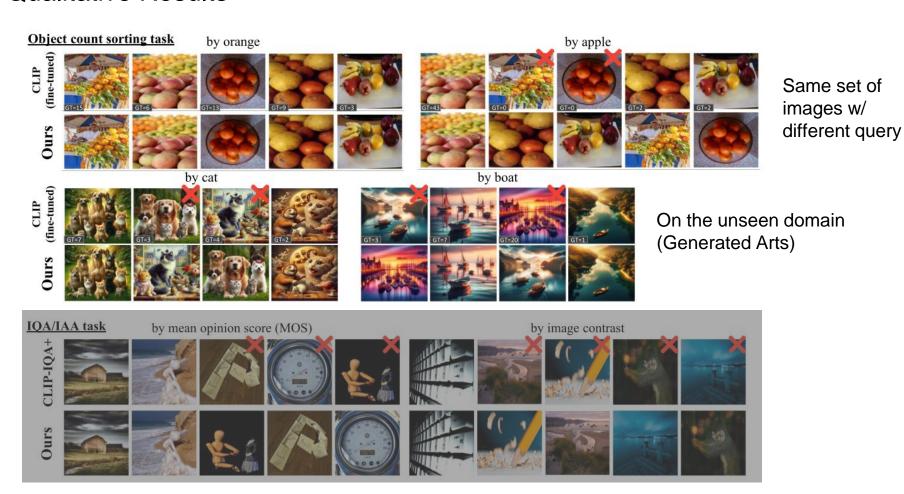
- Datasets
 - Visual Quantity: COCO (object count sorting)
 - Visual Quality: KonIQA-10k (image quality) and AVA (image aesthetics)
 - <u>Perceptual Concepts</u>: Adience (facial age) and historical colored image (photo taken decade)
- Evaluation Metrics
 - Object count sorting and IQA/IAA <u>Pearson's correlation</u> and <u>Spearman's correlation</u>
 - Facial aging and historical colored image aging Mean absolute error (MAE) and Accuracy

Quantitative Results

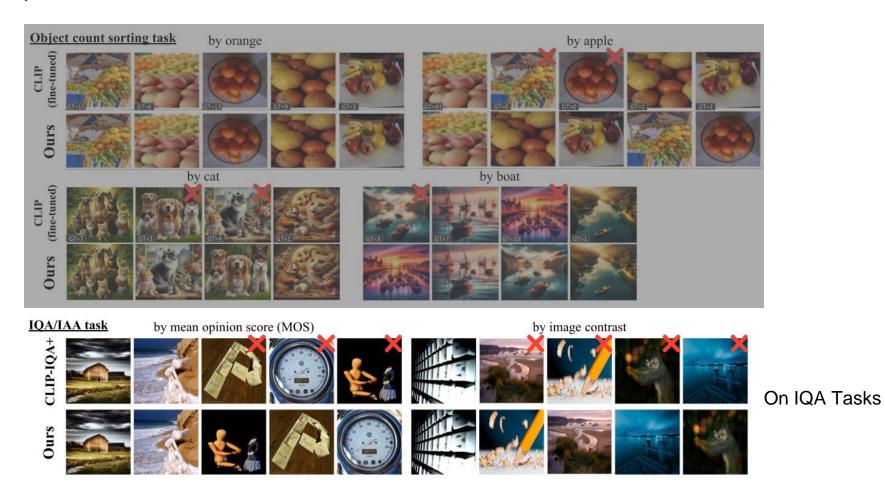
Method	Fine- tuning	PLCC (†)	SRCC (†)	Method	Adio Accuracy (%	ence) MAE	H Accuracy (%	CI) N
BLIP-2 Flamingo (10-shot)		0.284 0.033	0.252 0.031	Zero-shot CLIP	43.3 (3.6)	0.80 (0.02)	26.1 (0.6)	1.
structBLIP LM-VILA		0.509 0.558	$0.485 \\ 0.507$	OrdinalCLIP	60.6 (5.5) 61.2 (4.2)	0.50(0.08) 0.47(0.06)	51.9 (2.6) 56.4 (1.7)	0
shot CLIP		0.026	0.001	NumCLIP	66.2 (4.4)	0.36 (0.05)	67.2 (1.6) 69.6 (2.0)	0. 0.
ountingCLIP aiss et al. (2023)	✓	0.251	0.422	InstructBLIP	63.7	0.41	30.9	0.
ours	✓	0.624	0.557	Ours	65.2 (2.9)	0.36(0.03)	72.8(2.6)	0.

			KonIQ-10k		AVA Dataset	
Method	Task-related pertaining	Fine-tuning	PLCC (†)	SRCC (†)	PLCC (†)	SRCC (†)
Purely vision-based (task-specific) MUSIQ Ke et al. (2021)		√	0.924	0.937	0.726	0.738
VLM-based (task-specific) VILA-P Ke et al. (2023) VILA-R Ke et al. (2023)	√ ✓	√	0.919	0.932	0.657 0.774	0.663 0.774
CLIP (fine-tuned) InstructBLIP Dai et al. (2023) CLIP-IQA Wang et al. (2023c)		√	0.245 0.211 0.695	0.216 0.163 0.727	0.162 0.229 0.420	$0.160 \\ 0.226 \\ 0.415$
CLIP-IQA+ Wang et al. (2023c) Hentschel et al. (2022) Ours		✓ ✓	0.895 - 0.919	0.909 - 0.911	0.677 0.731 0.760	$0.587 \\ 0.741 \\ 0.747$

Qualitative Results



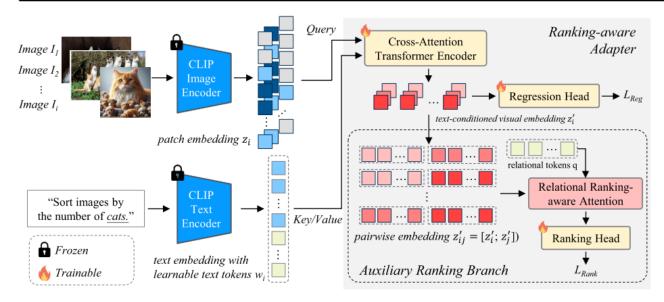
Qualitative Results



Ablation Study

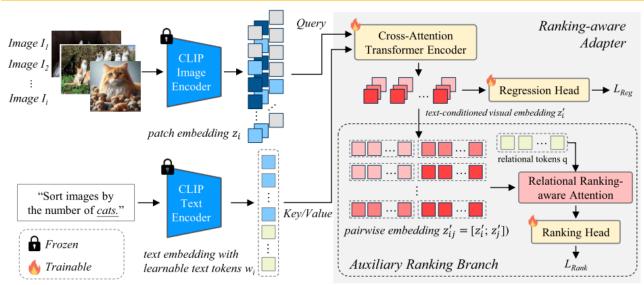
			HCI	Object count sorting		
LTR paradigm	LTR paradigm Ranking Head		$\mathrm{MAE}\left(\downarrow\right)$	PLCC (†)	SRCC (†)	
-	-	-	1.113	0.251	0.422	
	-	-	0.402	0.612	0.538	
√ ✓	√	- <	$0.355 (+11.69\%) \\ 0.317 (+21.14\%)$	0.619 (+1.14%) 0.624 (+1.96%)	$0.536 (-0.37\%) \\ 0.557 (+3.53\%)$	

Baseline: CLIP w/ finetuning (contrastive Learning)



Ablation Study

			HCI	Object cor	ant sorting	
LTR paradigm	Ranking Head	Ranking-aware Attention	$\mathrm{MAE}\left(\downarrow\right)$	PLCC (†)	SRCC (†)	
-	-	-	1.113	0.251	0.422	
√	-	-	0.402	0.612	0.538	
√ √	√ √	- <	$0.355 (+11.69\%) \\ 0.317 (+21.14\%)$	0.619 (+1.14%) 0.624 (+1.96%)	$0.536 (-0.37\%) \\ 0.557 (+3.53\%)$	



Conclusion

- We present an efficient and scalable framework <u>for text-driven image ranking</u> by reframing CLIP's image-text contrastive learning into an <u>LTR task</u>.
- By leveraging a lightweight adapter with our <u>ranking-aware attention</u> module, it can effectively capture <u>text-driven visual differences between image pairs</u>.
- Our work, <u>an all-in-one and end-to-end method</u>, surpass CLIP baselines and achieve results comparable to <u>SOTA methods tailored for specific task</u>, highlights the potential of leveraging VLMs with visual distinctions for developing sense of number sense.

Thank You For Your Attention!

