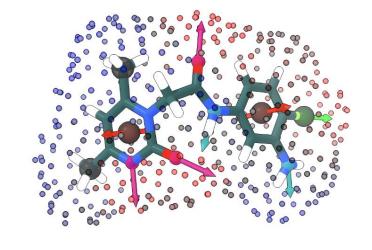
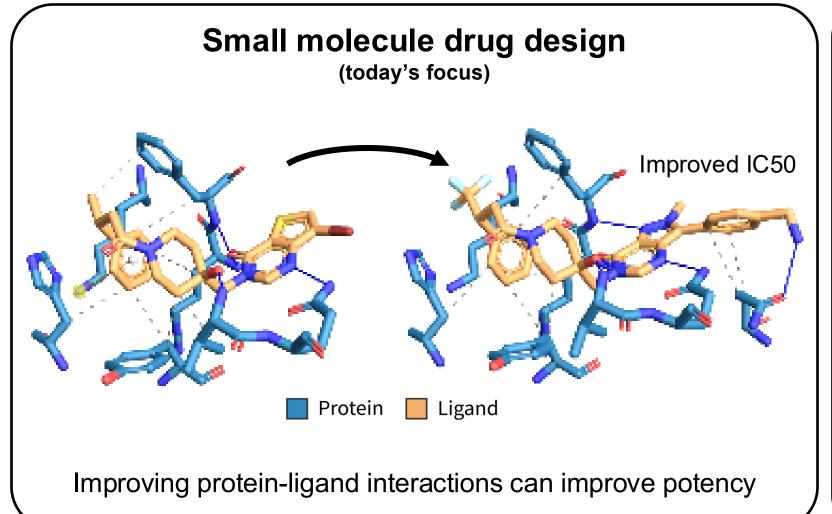
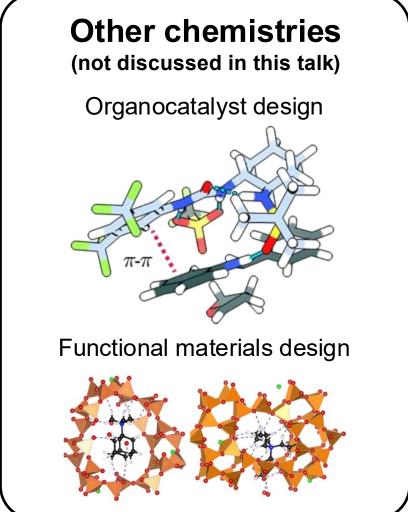
ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design



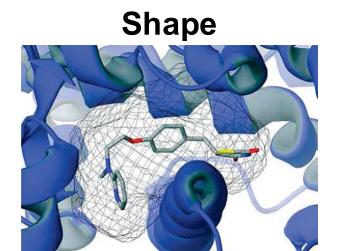
Keir Adams*, **Kento Abeywardane***, Jenna Fromer, and Connor Coley Coley Research Group, MIT ICLR 2025

Engineering molecules to engage in precise 3D intermolecular interactions underpins chemical design

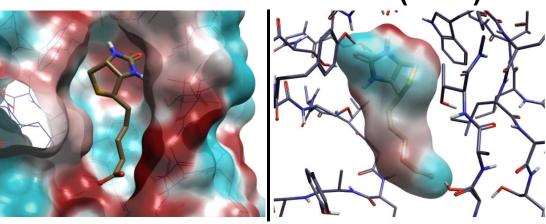




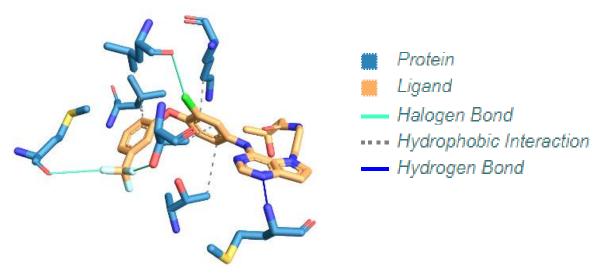
What factors into intermolecular interactions?



Electrostatic Potential (ESP)

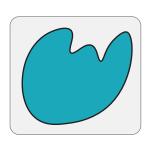


Noncovalent interactions

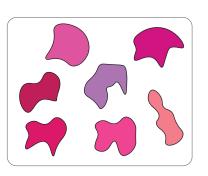


Contrasting structure-based vs. ligand-based drug design

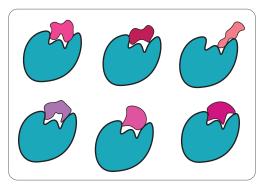
Structure-Based Drug Design (SBDD)



given protein target

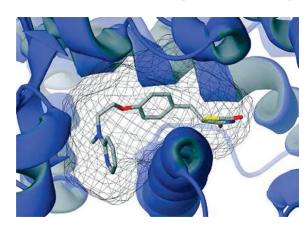


define molecular search space



screen for favorable drug-target interactions

evaluate protein-ligand binding



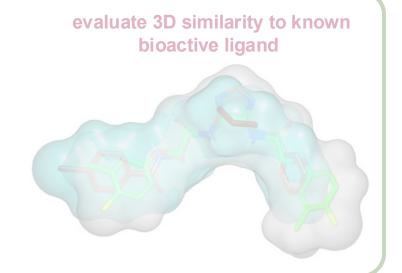
** Focus of this work

Ligand-Based Drug Design (LBDD)

given known ligand

define molecular search space

screen for ligand analogues based on 2D/3D similarity



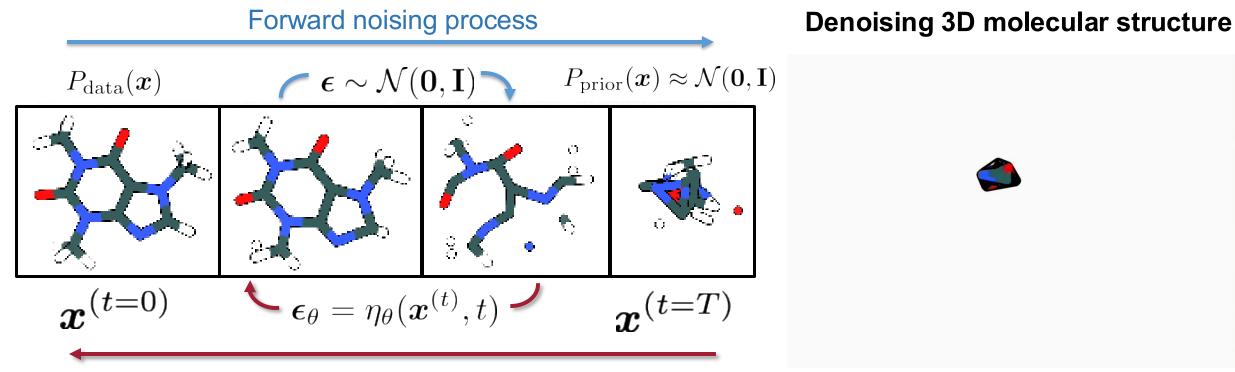
Bioisosteric substructures or ligands are identified via molecular or interaction similarity

Electrostatic potential Volumetric shape Pharmacophoric features H-bond acceptor H-bond donor Hydrophobe Aromatic ring ** Focus of this work evaluate 3D similarity to known bioactive ligand Ligand-Based **Drug Desig**

Traditional LBDD is inefficient due to random search and is restricted to pre-enumerated molecules.

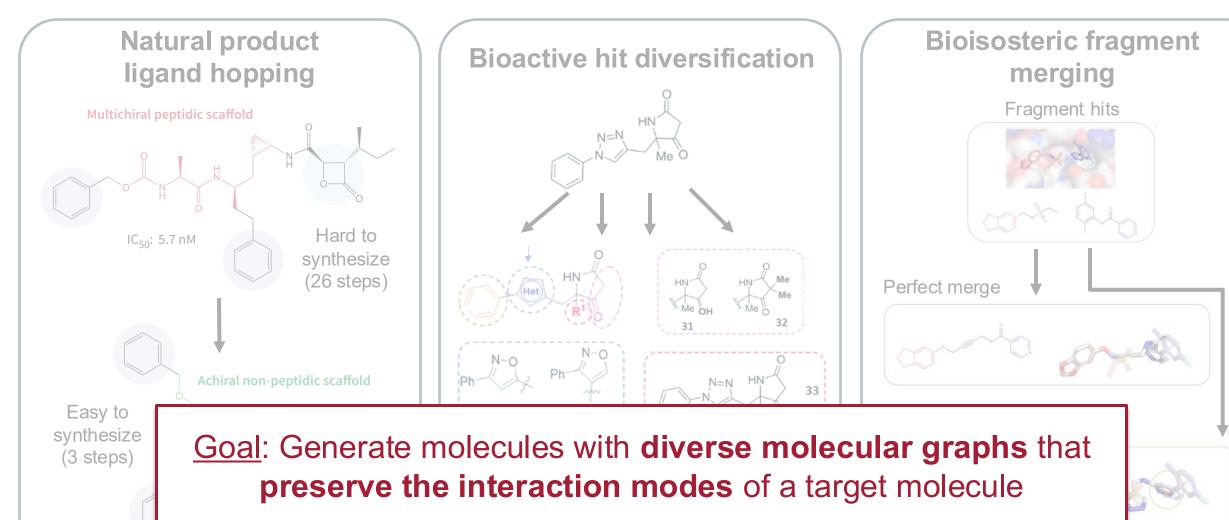
(LBDD)

Generative models enables efficient search of the full chemical space around the optimal solution through conditional generation



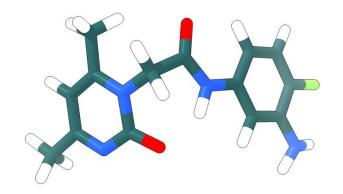
(Predict) Denoising process

Exemplary LBDD challenges require the preservation of interactions



Point cloud representation of a molecule

Molecular Structure (x_1)



Requirements for interaction profiles

- 1. Expressively captures potential interaction modes
- 2. Decoupled from molecular structure

$$\mathbf{x}_1 = (\mathbf{a}, \mathbf{C}, \mathbf{f}, \mathbf{B})$$

 $\boldsymbol{a} \in \mathbb{R}^{n_1 \times N_a}$ (one-hot atom types)

 $\mathbf{C} \in \mathbb{R}^{n_1 \times 3}$ (atomic positions)

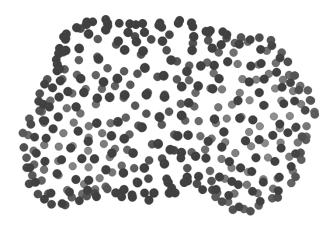
 $f \in \mathbb{R}^{n_1 \times 5}$ (one-hot atomic formal charges)

 $\mathbf{R} \in \mathbb{R}^{n_1 \times n_1 \times 5}$ (one-hot bond adjacency matrix / types)

Point clouds can represent essential molecular interaction features

Shape (x_2)

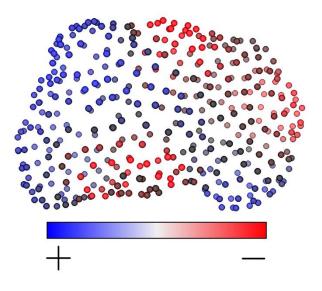
Points sampled on solvent-accessible surface



$$m{x}_2 = m{S}_2 \ m{S}_2 \in \mathbb{R}^{n_2 imes 3}$$
 (positions)

Electrostatics (x_3)

Coulombic potential on surface points



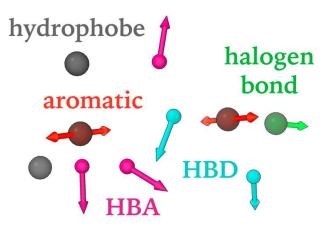
$$\boldsymbol{x}_3 = (\boldsymbol{S}_3, \boldsymbol{v})$$

$$\mathbf{S}_3 \in \mathbb{R}^{n_3 \times 3}$$
 (positions)

$$\boldsymbol{v} \in \mathbb{R}^{n_3}$$
 (ESP)

Pharmacophores (x₄)

Composed of pharmacophore position and vector point clouds



$$x_4 = (p, P, V)$$

$$\mathbf{p} \in \mathbb{R}^{n_4 \times N_p}$$
 (or $\mathbf{p} \in \mathbb{R}^{n_4 \times 3}$ (c)

(one-hot types)

$$P \in \mathbb{R}^{n_4 \times 3}$$

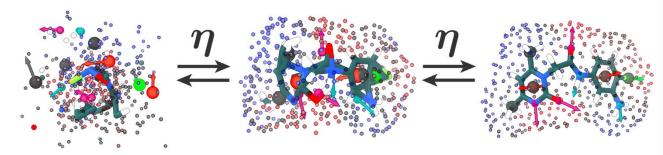
(positions)

$$V \in \{\mathbb{S}^2, \mathbf{0}\}^{n_4}$$
 (unit vectors)

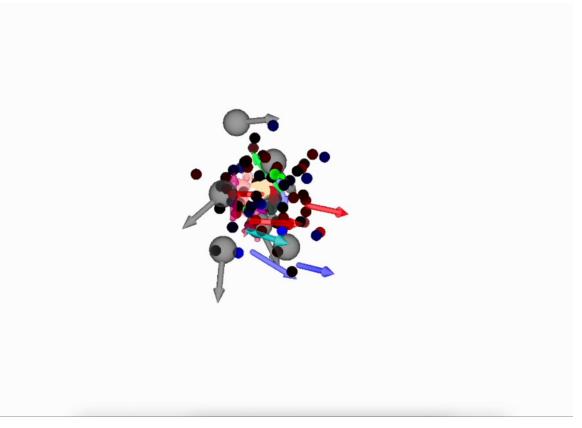
or
$$\in \mathbb{R}^{n_4 \times 3}$$

ShEPhERD defines a **joint** diffusion model over 3D molecules and explicit representations of their **shapes**, **electrostatics**, and **pharmacophores**

Shepherd = Shape, Electrostatics, and Pharmacophore Explicit Representation Diffusion



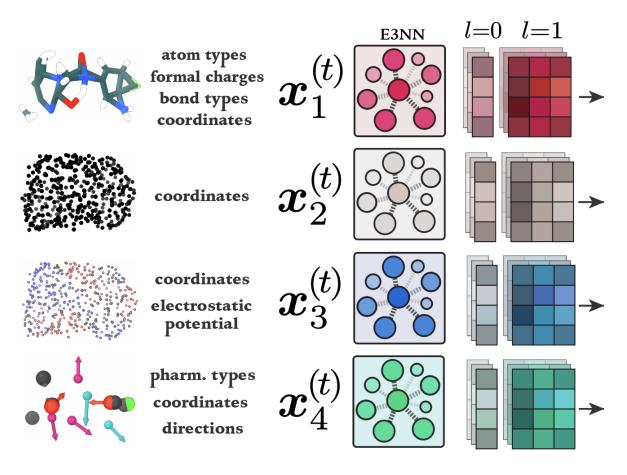
- Trained on 1.6M molecules from MOSES
- All data-types are **treated as continuous** and noised with isotropic Gaussian noise $\epsilon \in N(\mathbf{0}, \mathbf{I})$
- Simultaneously denoises each point cloud
- Conditionally sample by inpainting interaction profiles



Joint denoising with *ShEPhERD* structure, shape, electrostatics, and pharmacophore

ShEPhERD's SE(3)-equivariant denoising architecture

Goal: Obtain the denoised state $(x_1^{(t-1)}, x_2^{(t-1)}, x_3^{(t-1)}, x_4^{(t-1)})$ by predicting the (forward) noises

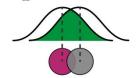


Input States → **Embedding Modules**

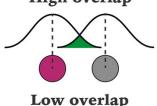
Generated samples conditioned on a target interaction profiles maintain high 3D interaction similarity as measured by Gaussian overlap

Point Cloud Similarity

Unweighted shape similarity



High overlap



Weighted by ESP

Matched charges retain overlap

Mismatched charges decrease overlap

Weighted by pharm. type and direction

Mismatched types have no overlap

Misaligned directions decrease overlap

- Negatively charged
- Positively charged
- Non-directional pharmacophore
- **Directional** pharmacophore

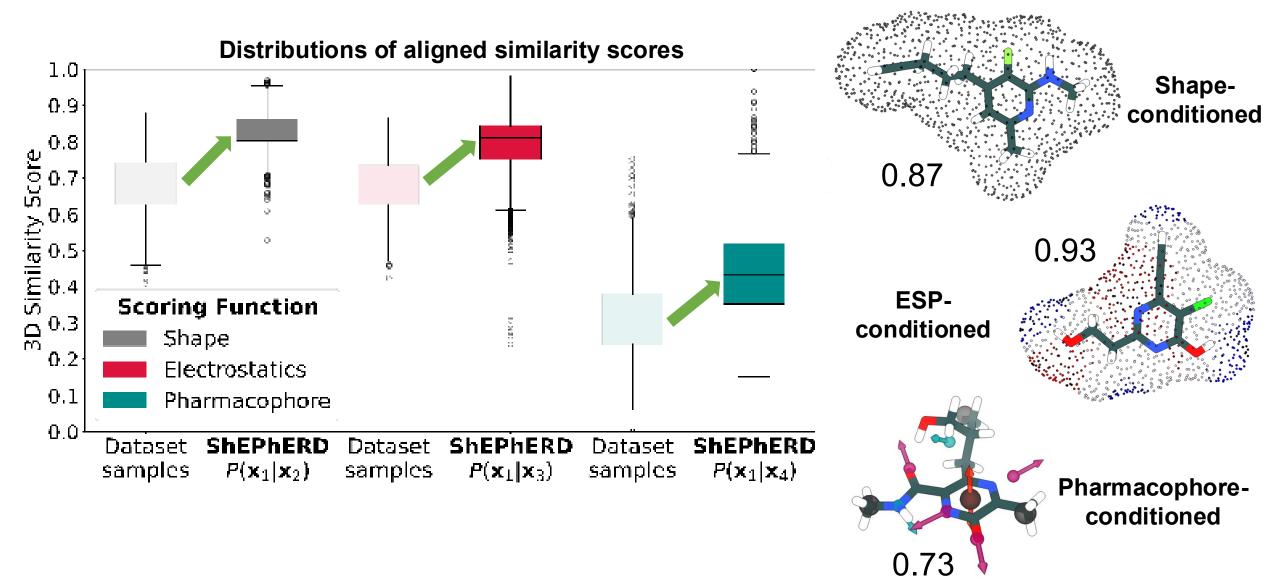
Tanimoto similarity

$$\operatorname{sim}^*(\boldsymbol{Q}_A, \boldsymbol{Q}_B) = \frac{O_{AB}}{O_{AA} + O_{BB} - O_{AB}}$$

Gaussian overlap

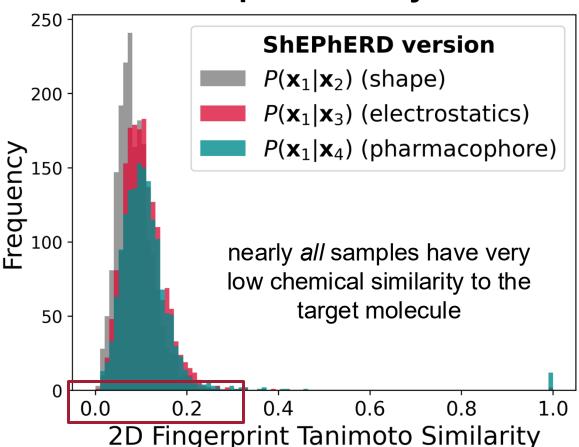
Ssian overlap
$$O_{AB} = \sum_{a \in m{Q}_A} \sum_{b \in m{Q}_B} w_{ab} igg(rac{\pi}{2lpha}igg)^{rac{3}{2}} \expigg(-rac{lpha}{2}||m{r}_a - m{r}_b||^2igg)$$

ShEPhERD enriches 3D similarity distributions of interaction profiles

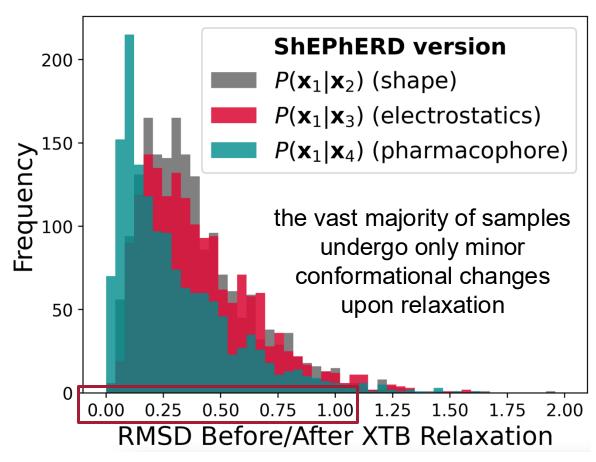


ShEPhERD generates chemically diverse and locally stable conformers

Graph similarity



RMSD after relaxation



ShEPhERD enables natural product ligand hopping

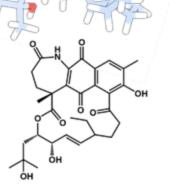
Target

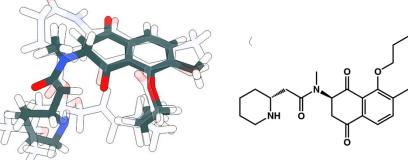
Example analogues

SA score: 4.2

ESP sim: 0.73

Pharm. sim: 0.39

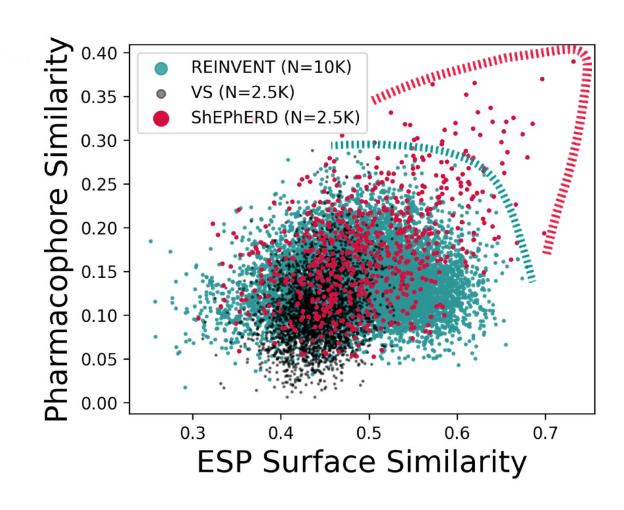




SA score: 3.7

ESP sim: 0.62

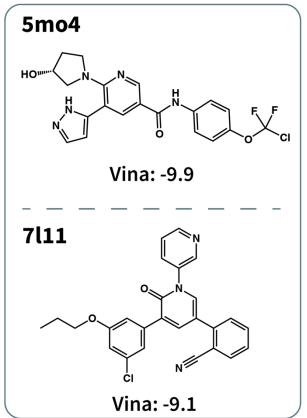
Pharm. sim: 0.37



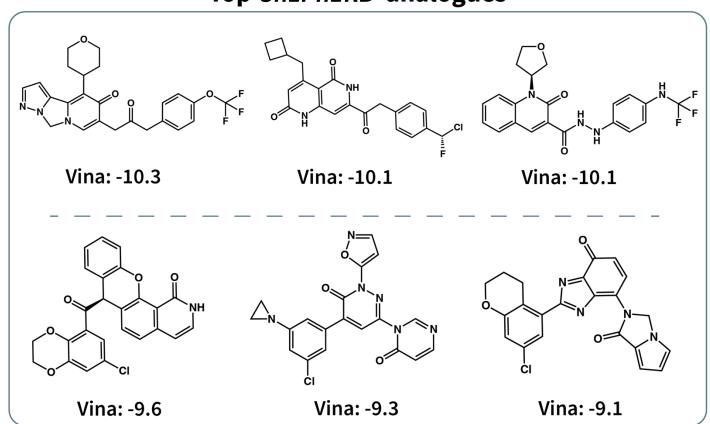
ShEPhERD diversifies ligands + preserves their binding modes

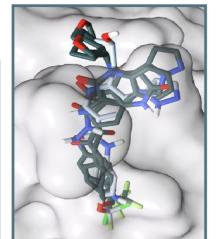
Overlaid docked poses

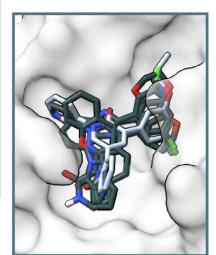
PDB Ligand



Top ShEPhERD analogues





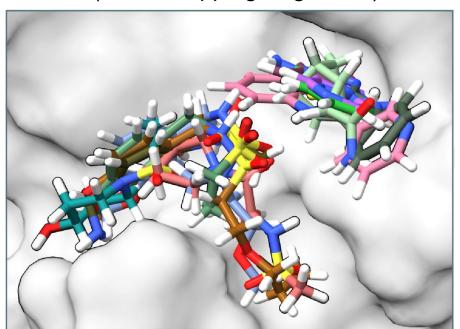


^{*}note docking is used as a poor, in silico surrogate for binding affinity

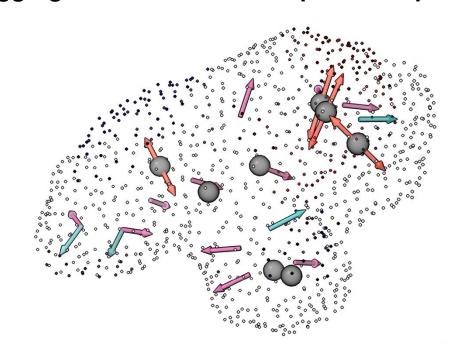
ShEPhERD enables bioisosteric fragment merging

• **Bioisosteric fragment merging** seeks to merge fragments into a new ligand that *preserves the fragments' binding interactions*, without necessarily containing the exact fragments themselves

Fragment Screen (13 overlapping fragments)

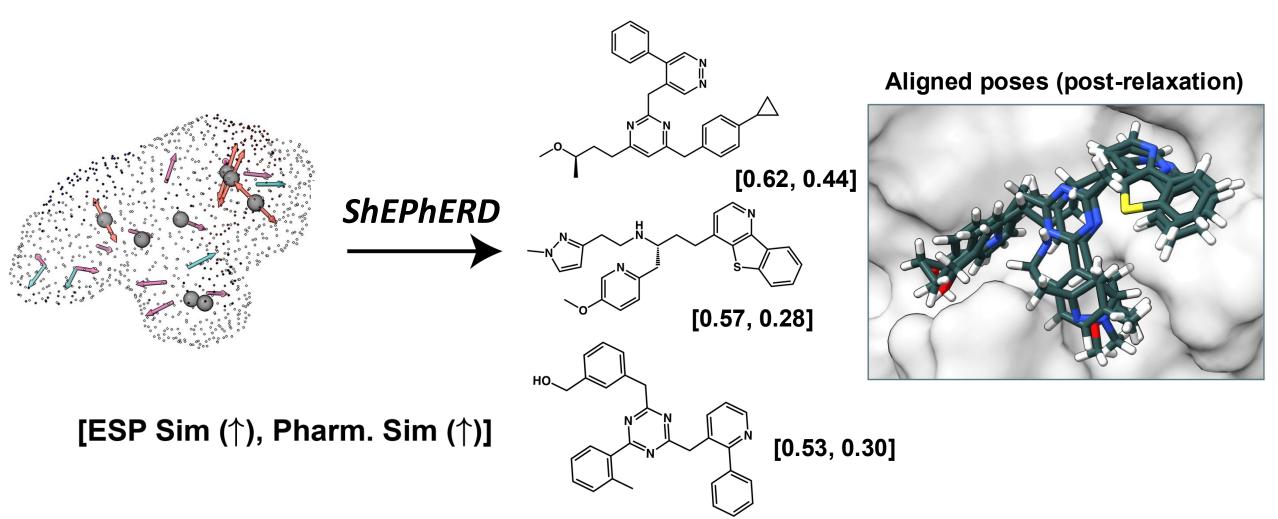


Aggregate ESP surface and pharmacophore



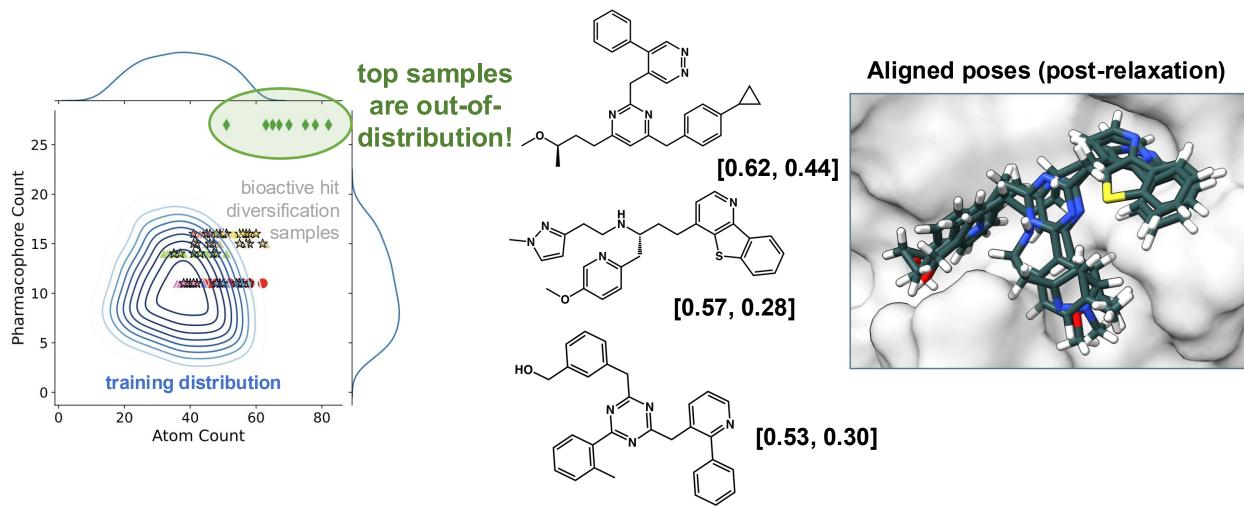
ShEPhERD enables bioisosteric fragment merging

• **Bioisosteric fragment merging** seeks to merge fragments into a new ligand that *preserves the fragments' binding interactions*, without necessarily containing the exact fragments themselves



ShEPhERD enables bioisosteric fragment merging

• **Bioisosteric fragment merging** seeks to merge fragments into a new ligand that *preserves the fragments' binding interactions*, without necessarily containing the exact fragments themselves



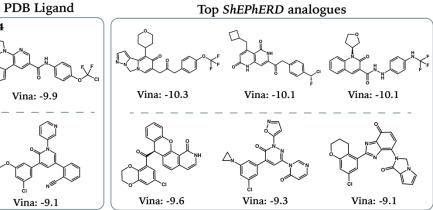
Outlook

ShEPhERD shows promise for challenging tasks in 3D ligand-based drug design

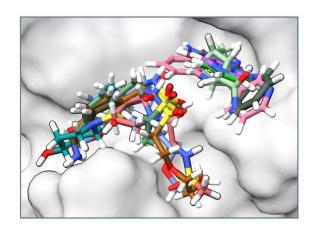
Can generate diverse molecules that maintain interactions

Ligand hopping

Hit diversification



Fragment merging

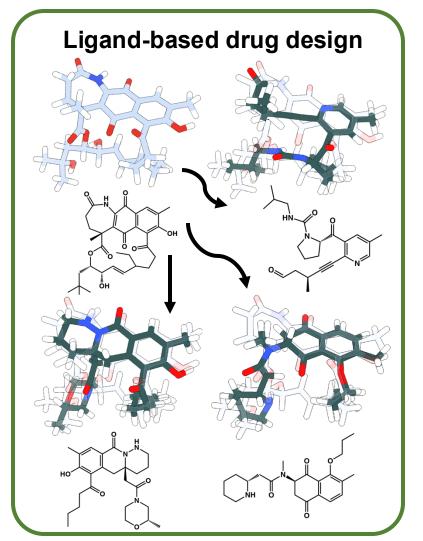


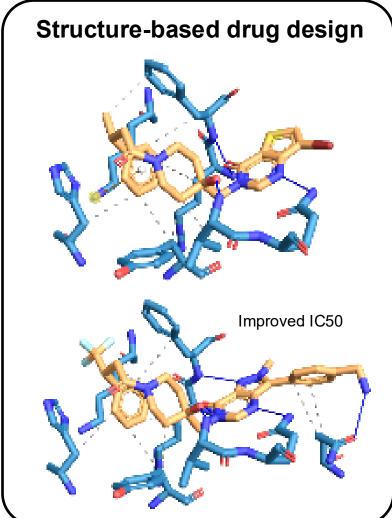
Future directions

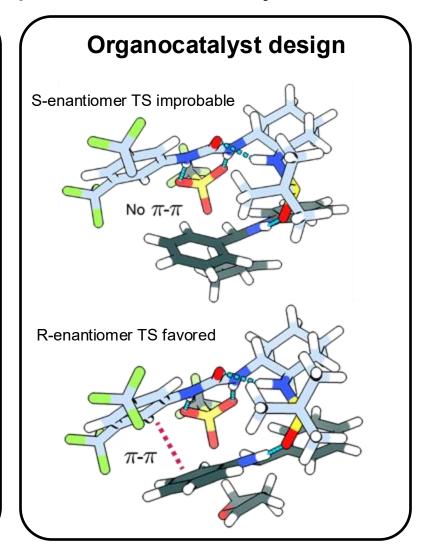
- Inference-time optimization strategies
- Redesigning model to accelerate sampling (e.g., flow-matching vs. diffusion)
- Scaling up to larger drug-like datasets (ZINC, Enamine, ChEMBL, etc.)

Outlook

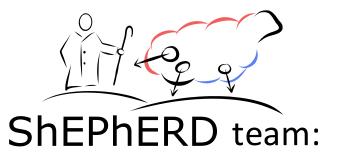
ShEPhERD may also be extended to address interaction-dependent tasks beyond LBDD







Acknowledgements



Keir Adams

Jenna Fromer

PI: Connor W. Coley

Coley Research Group:

Funding and computational resources:

GitHub

