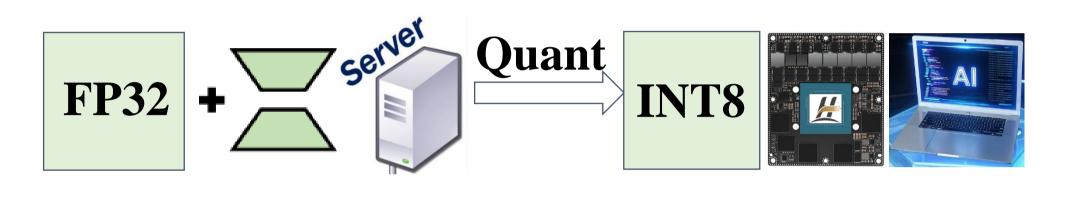

MambaQuant: Quantizing The Mamba Family With Variance Aligned Rotation Methods

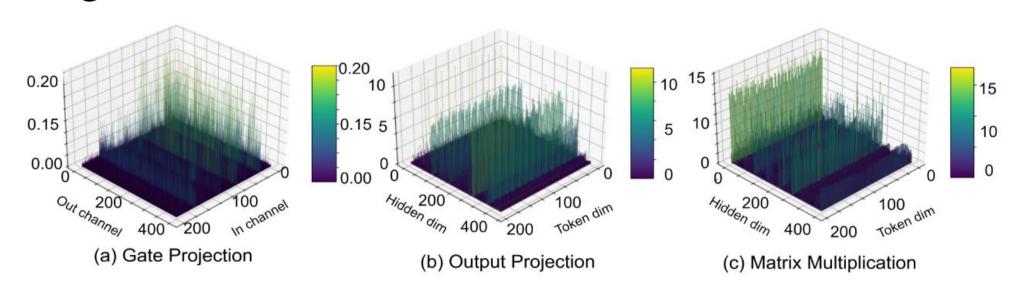
Zukang Xu*, Yuxuan Yue^{1,2*†}, Xing Hu¹, Zhihang Yuan¹, Zixu Jiang^{1,3†}, Zhixuan Chen¹, Jiangyong Yu¹, Chen Xu¹, Sifan Zhou¹, Dawei Yang¹


¹ Houmo AI ² Harbin Institute of Technology (Shenzhen) ³ Nanjing University ⁴Southeast University

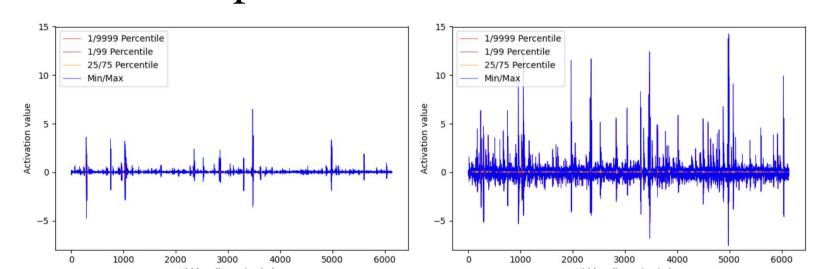
Motivation

Mamba is widely applied across domains.

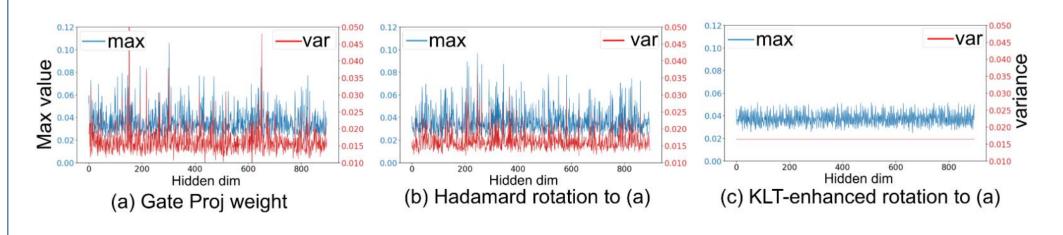
Quantization compresses models, cuts costs.



Mamba quantization under-researched, solns urgent.


- Lack of systematic exploration.
- > Ineffectiveness of existing methods.
- >Unique challenges in Mamba.

Challenge


1. Significant outliers in Mamba models

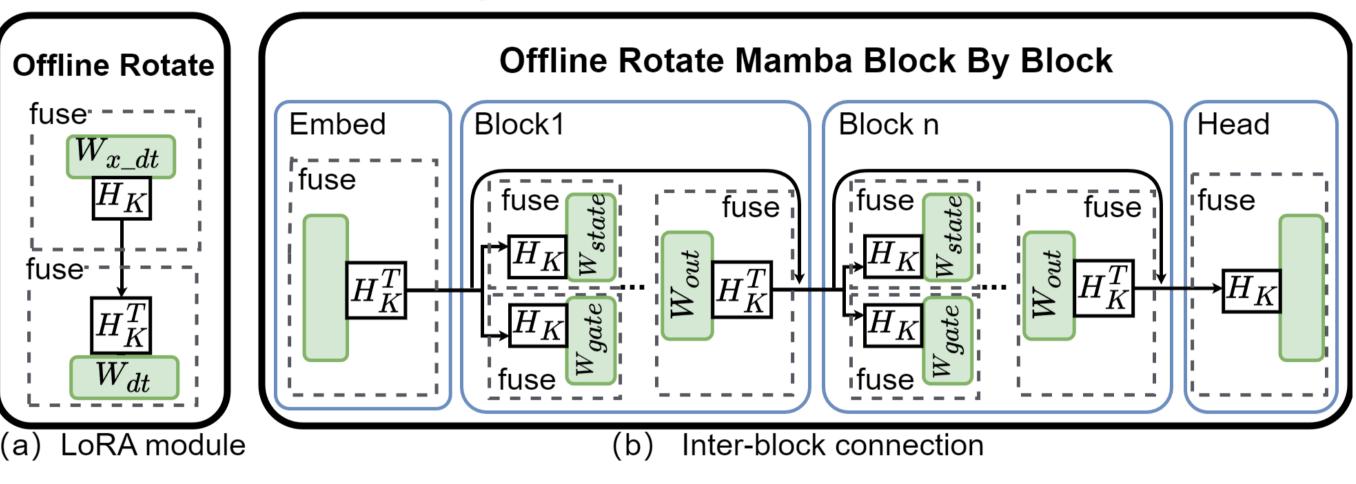
2. PScan amplifies the outliers

3. Hadamard rotation fails to align variance

Method(Part I): Offline Rotation

KLT-Enhanced Rotation For Offline Transformation

 \triangleright Covariance matrix C_X of centered matrix X from calibration data


$$C_X = \frac{1}{n-1} X^T X = \frac{1}{n-1} K \Lambda K^T.$$

 \triangleright Apply KLT to Hadamard matrix H to get KLT - Enhanced rotation matrix H_K

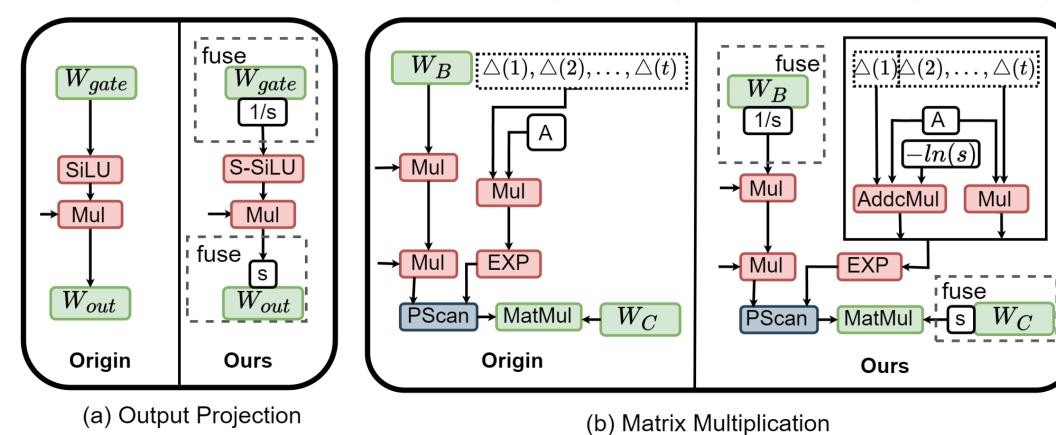
$$H_K = KH$$
,

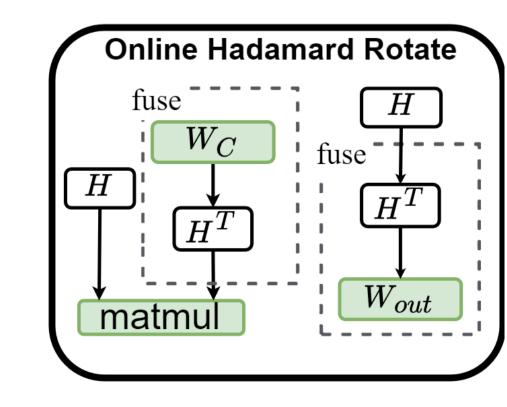
$$C_{XH_K} = \frac{1}{n-1} \boldsymbol{H}_K^T \boldsymbol{K} \boldsymbol{\Lambda} \boldsymbol{K}^T \boldsymbol{H}_K = \frac{1}{n-1} \boldsymbol{H}^T \boldsymbol{K}^T \boldsymbol{K} \boldsymbol{\Lambda} \boldsymbol{K}^T \boldsymbol{K} \boldsymbol{H} = \frac{1}{n-1} \boldsymbol{H}^T \boldsymbol{I} \boldsymbol{\Lambda} \boldsymbol{I} \boldsymbol{H},$$

>Offline transformation designs

Method(Part II): Online Rotation

Smooth-Fused Rotation For Online Transformation

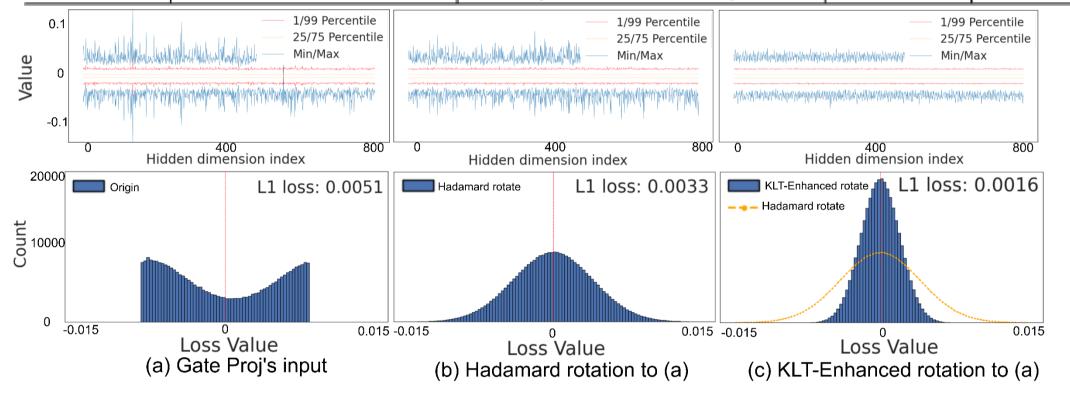

For the output projection layer: replace SiLU with S-SiLU to fuse parameter s.


$$S-SiLU(\boldsymbol{x},s) = \boldsymbol{x} \odot \sigma(\boldsymbol{s} \odot \boldsymbol{x}),$$

$$oldsymbol{y}_{out} = [oldsymbol{y}_{ssm} \odot ext{SiLU}(oldsymbol{x}_g oldsymbol{W}_g)] oldsymbol{W}_o = [oldsymbol{y}_{ssm} \odot ext{S-SiLU}(oldsymbol{x}_g oldsymbol{W}_g', s_{out})] oldsymbol{W}_o',$$

For the Matmul layer: use addcmul to absorb s passed through PScan

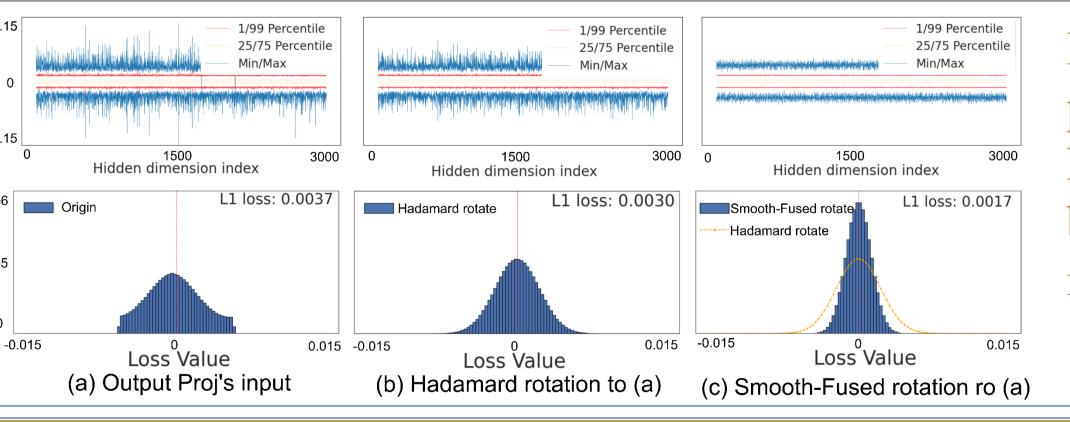
$$addcmul(-\ln(s_{mm}), \Delta(1), A) = A\Delta(1) - \ln(s_{mm}).$$


Experiments

Performance Comparison on Vision Model and Language Model

		_											
Bit Width	Methods	Vision Mamba				Mamba-ND			Mamba-LLM				
		Vim-T	Vim-T [†]	Vim-S	Vim-S†	Vim-B	mamba-2d S	Mamba-2d B	Mamba-3d	Mamba-370m	Mamba-790m	Mamba-1.4b	Mamba-2.8b
FP16	-	76.1	78.3	80.5	81.6	80.3 [‡]	81.7	83.0	89.6	50.9	54.8	58.6	62.2
W8A8	RTN	37.4	32.4	68.8	68.8	52.2	80.3	82.2	87.9	45.7	44.9	53.9	58.4
	GPTQ+RTN	37.7	32.5	68.9	70.5	52.2	80.4	82.2	87.8	46.2	48.6	55.0	58.9
	SmoothQuant	37.7	32.3	68.7	72.9	52.1	80.3	82.2	87.9	45.2	41.7	54.2	58.7
	QuaRot	59.3	57.4	73.8	75.5	73.8	80.8	82.3	88.0	48.8	51.6	56.9	59.3
	Ours	75.6	77.8	80.3	81.4	80.1	81.2	82.8	89.0	50.0	53.8	58.3	62.1
W4A8	RTN	26.3	25.0	66.1	70.0	46.2	40.6	78.8	86.1	36.2	35.4	51.6	54.8
	GPTQ+RTN	30.4	27.9	66.5	70.6	47.7	60.3	78.9	86.8	36.7	36.0	51.1	53.6
	SmoothQuant	27.0	26.0	66.4	70.2	46.7	59.7	80.2	86.9	36.8	39.3	52.0	54.9
	QuaRot	52.7	48.5	72	74.0	72.8	80.1	82.0	86.9	43.4	40.0	53.8	58.5
	Ours	72.1	73.7	79.4	80.4	79.8	80.4	81.9	88.4	43.9	45.8	54.3	58.5

Ablation Experiment For KLT-Enhanced Rotation


Bit Width	Methods	Vim T [†]	Mamba-790m	Bit Width	Methods	Vim T [†]	Mamba-790m
FP16	-	78.3	54.8	FP16	-	78.3	54.8
	Baseline(RTN)	32.4	44.2		Baseline(RTN)	25.0	35.4
W8A8	Hadamard Rotate	33.9(† 1.5)	50.8(† 6.6)	W4A8	Hadamard Rotate	$25.1(\uparrow 0.1)$	40.2 (↑ 4.8)
	KLT-Enhanced Rotate	47.7(† 15.3)	51.3(† 7.1)		KLT-Enhanced Rotate	38.9(† 3.9)	42.3(† 6.9)

By comparing experiments with and without it in different models, it shows that KLT - Enhanced Rotation can balance channel variance. For example, in Vim's W4A8 setting, accuracy improves over 6%, validating its effectiveness in the MambaQuant framework.

Ablation Experiment For KLT-Enhanced Rotation

Bit Width	Methods	Vim-T [†]	Mamba-790M	Bit Width Methods		Vim-T [†]	Mamba-790M	
FP16	-	78.3	54.6	FP16	-	78.3	58.6	
	Baseline(KLT-enhanced Rotation)	47.7	51.3		Baseline(KLT-enhanced Rotation)	38.9	42.3	
W8A8	Hadamard Rotation	69.7(† 22.0)	51.8(† 0.5)	W4A8	Hadamard Rotation	62.0(† 23.1)	43.0(† 0.7)	
	Smooth-Fused Rotation	77.8(† 30.1)	53.3(† 2.0)		Smooth-Fused Rotation	73.7(† 34.8)	45.8(† 3.5)	

It replaces SiLU with S-SiLU and absorbs the s-parameter. Experiments on models show Smoothed Rotation can equalize activation channel variances. It boosts quantized Mamba model performance, proving its worth in the framework.

Conclusion

- > Unveiling the cause of performance drop in the quantization of the mamba model
- >Mambaquant: first general and effective quantization method for maba-based models
- > SOTA performance: almost the same as the FP16 model in W8A8