Training-free Camera Control for Video Generation

Chen Hou, Zhibo Chen University of Science and Technology of China

Motivation

Discovery 1:
Text cannot control video's camera motion.

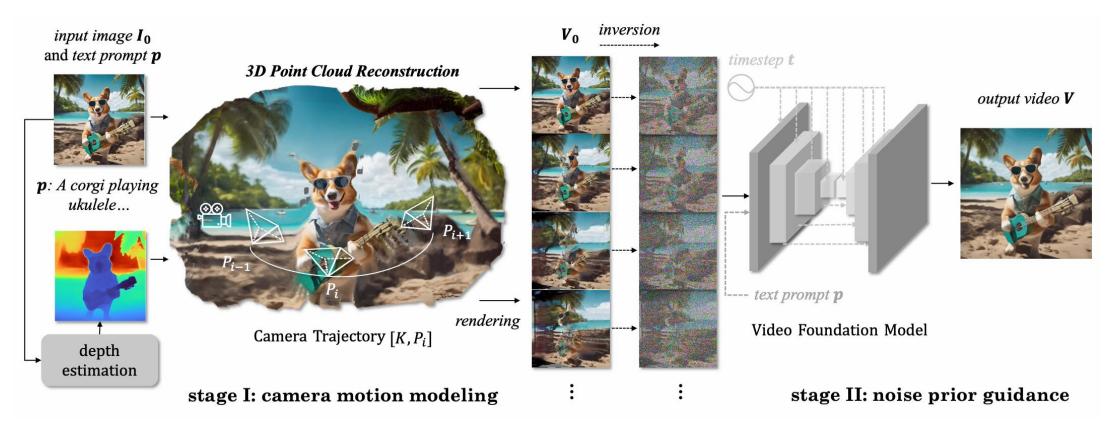
A ceramic cat.

A ceramic cat, camera rotates around it.


(what we expect)

Discovery 2: Finetuning can harm dynamics and diversity.

Prompt:


MotionCtrl

CameraCtrl

How to fully preserve large models' prior while controlling camera motion?

Inspiration: diffusion's latent noise could affect the layout of output

- a. camera moves
- b. render -> 2D inpainting -> 3D lifting
- c. view consistency optimization

Experiments

Table 1: **Quantitative comparisons.** Our method attains comparable performance with finetuned methods in both video generation quality and camera motion alignment.

Method	Video Quality				Motion Accuracy		
	$FVD\downarrow$	$FID \downarrow$	IS \uparrow	CLIP-SIM ↑	$ATE\downarrow$	$RPE\text{-}T\downarrow$	RPE-R↓
SVD	1107.93	68.51	7.21	0.3095	4.23	1.79	0.021
MotionCtrl+SVD	810.59	69.03	7.17	0.3076	4.19	1.07	0.012
CameraCtrl+SVD	951.80	67.59	6.82	0.3138	4.22	1.17	0.013
CamTrol+SVD	778.46	<u>68.06</u>	<u>7.05</u>	0.3110	4.17	1.07	0.010
Reference	-	-	-	-	3.60	0.89	0.008

Table 2: Computational analysis of inference process, evaluated under unified settings.

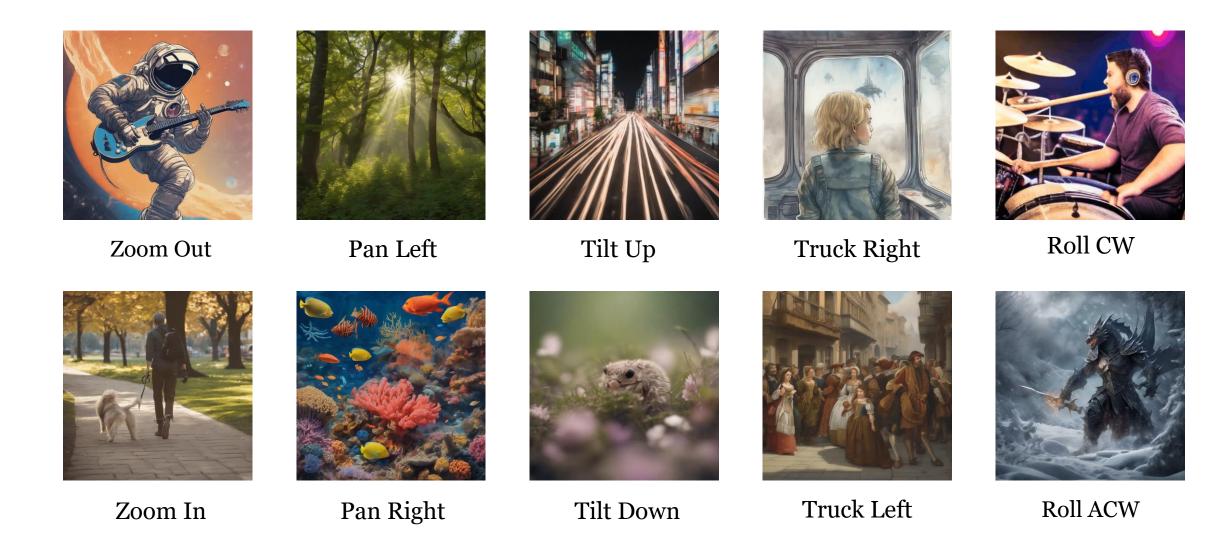
		SVD	MotionCtrl	CameraCtrl	$\operatorname{CamTrol}\left(t_{0}=10\right)$	
Max GPU memory(MB)		11542	31702	26208	11542	
Time (s)	pre-process inference	- 11	32	- 42	56 8	

Table 3: Quantitative effect of t_0 .

t_0	Video Quality				Motion Accuracy			
	$FVD\downarrow$	FID↓	IS ↑	CLIP-SIM ↑	$ATE\downarrow$	RPE-T↓	RPE-R↓	
$t_0 = 5$	1079.88	68.52	7.14	0.3100	4.17	1.09	0.012	
$t_0 = 10$	778.46	68.06	7.05	0.3110	4.17	1.07	0.010	
$t_0 = 15$	754.14	67.98	7.00	0.3107	4.13	1.02	0.008	

3d model bulky purple mecha with missiles ...

Figure 6: Effectiveness of layout prior.


+'camera zooms out'.

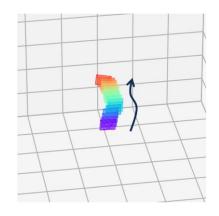
+CamTrol

Young wizard swings the wand, ...

Figure 5: Comparison with base model.

Results – Basic Camera Movements

Results – Hybrid & Complex Motions



Hybrid: Zoom In first, then Pedestal Up.

Complex Trajectory

Results – Multi-Trajectory Generation

Zoom Out

Tilt Up

Pan Left

Zoom In

Tilt Down

Pan Right

Results – Different Motion Scales

Scale I

Scale II

Scale III

Results – Unsupervised 3D Video Generation

dynamic 3D rotation video

3D object video

Results – Plug-and-Play with Most Video Diffusion Models

Combined with CogVideoX-t2v:

Tilt Down

Zoom In

Hybrid: Zoom Out + Pedestal Up + Truck Left + Tilt Down + Pan Right

Rotate Clockwise

Thanks for listening!

For more video results,

please refer to our website: https://lifedecoder.github.io/CamTrol/.