

Self-Training Enables Video Instruction Tuning with Any Supervision

Why do we care about Video-LMMs?

Augmented Reality (AR) Applications

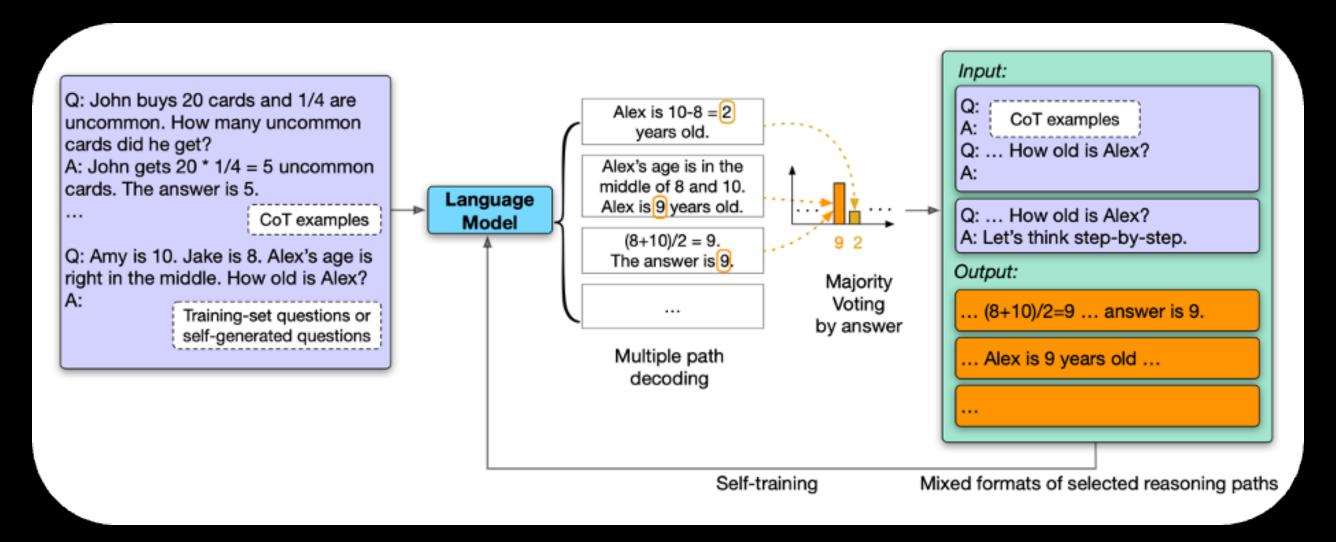
Virtual Customer Support Agent

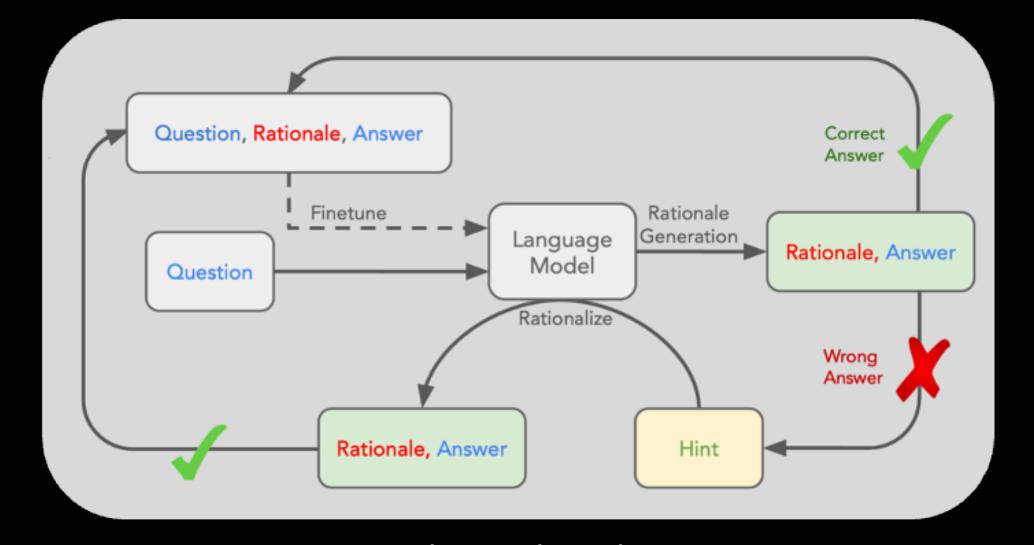
Robotics

Judge

Coach

Surgical Assistants


Cooking Instructor



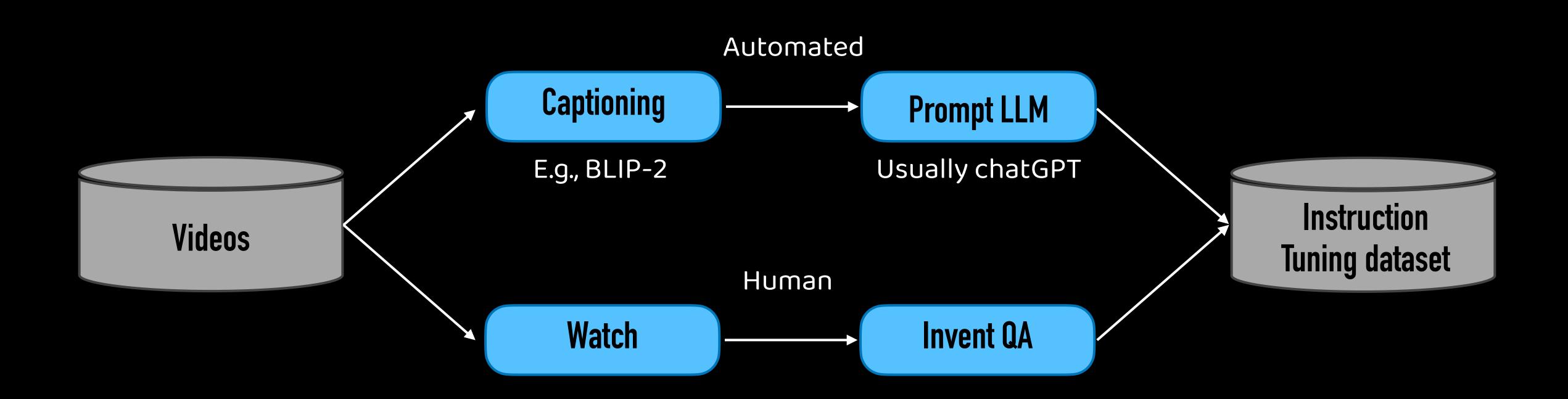
Background: Self-Training in Large Language Models

Majority Voting
Large Language Models Can Self-Improve, Huang et. al, 2022

Rationalization
STaR: Bootstrapping Reasoning With Reasoning, Zelikman et. Al, 2020

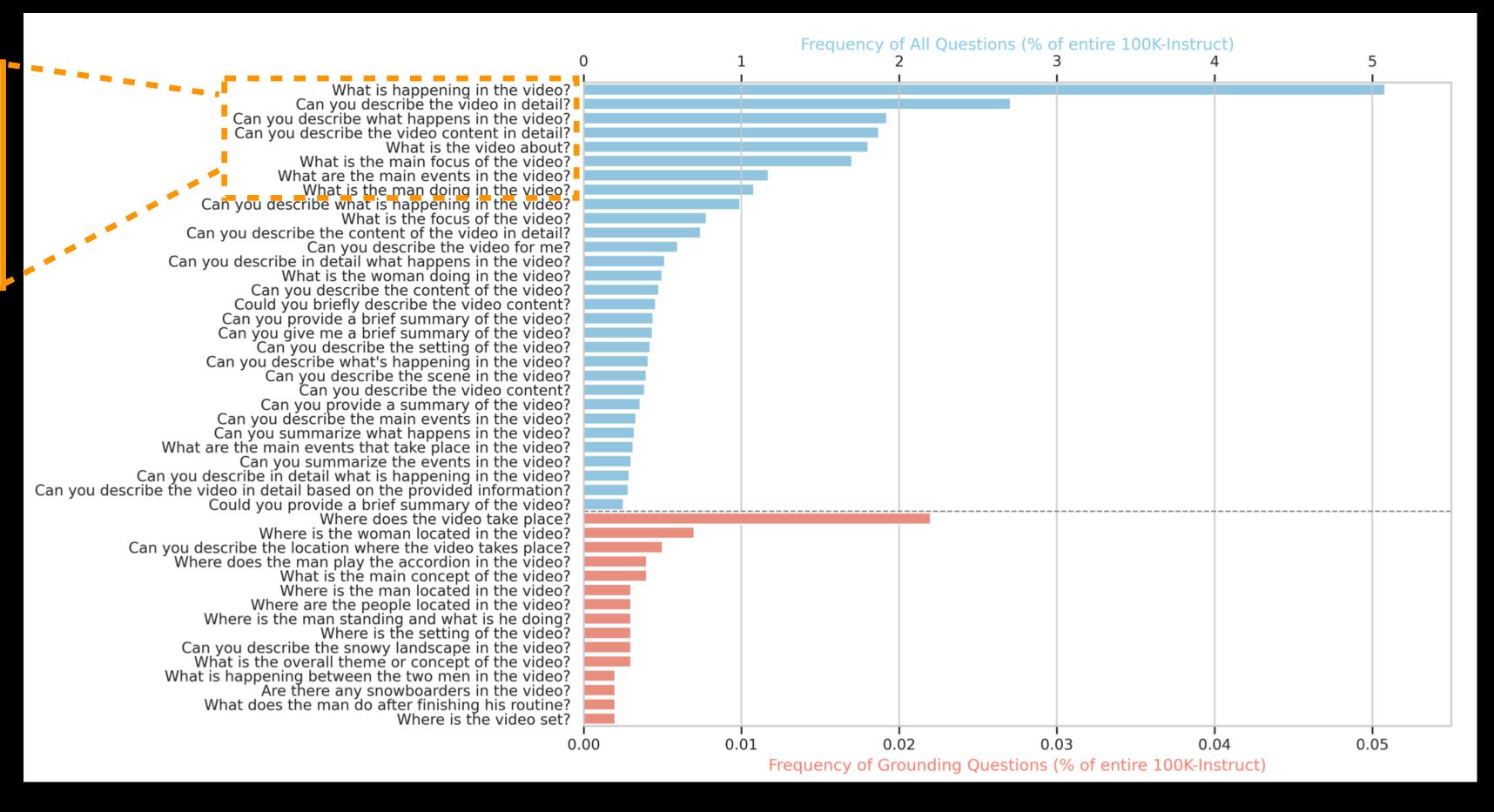
Video Instruction Tuning

Question: What room does the dog first go in to?

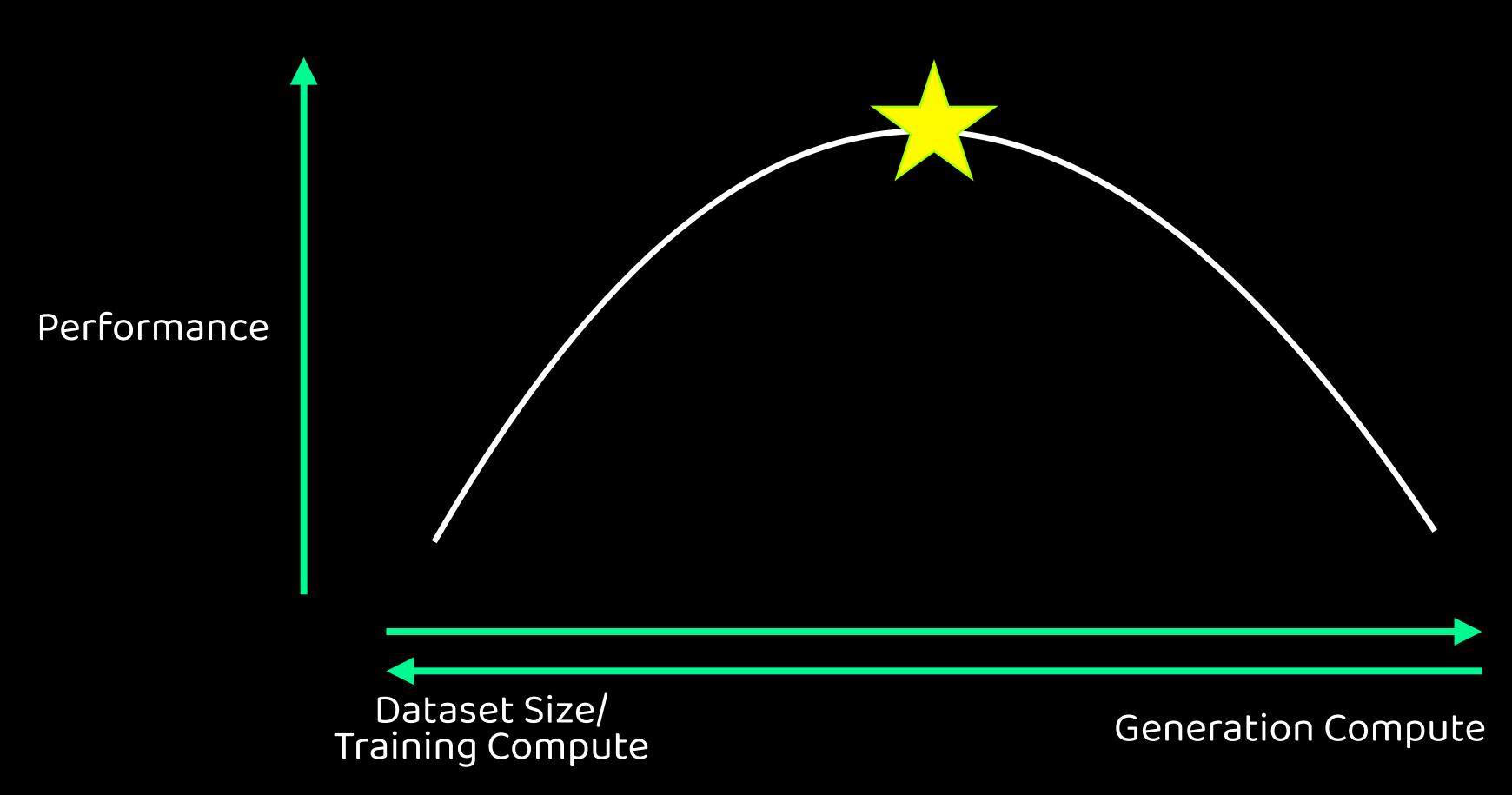

Answer: The room on the right

Video Instruction Tuning

However, collecting this data is hard because:


- 1. Requires annotators to watch long videos and come up with questionanswer pairs
- 2. Is frequently ambiguous
- 3. Different tasks will require new datasets

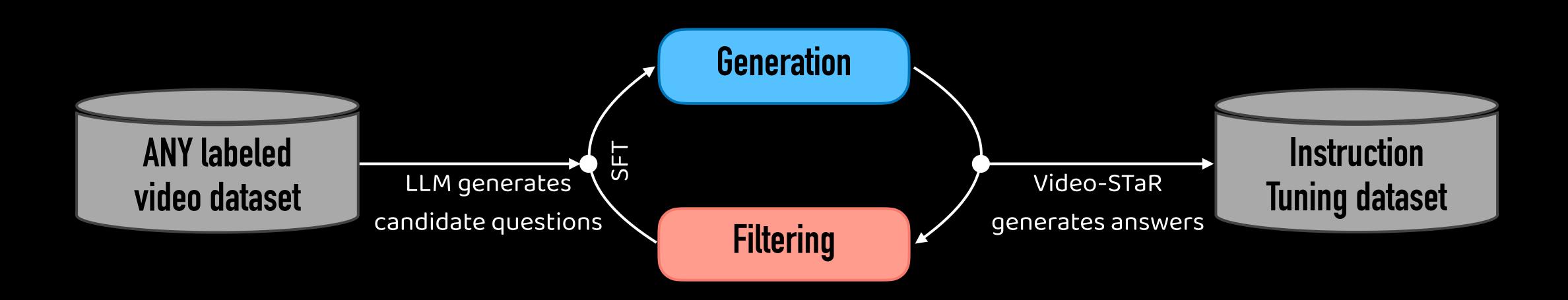
Existing annotation approaches



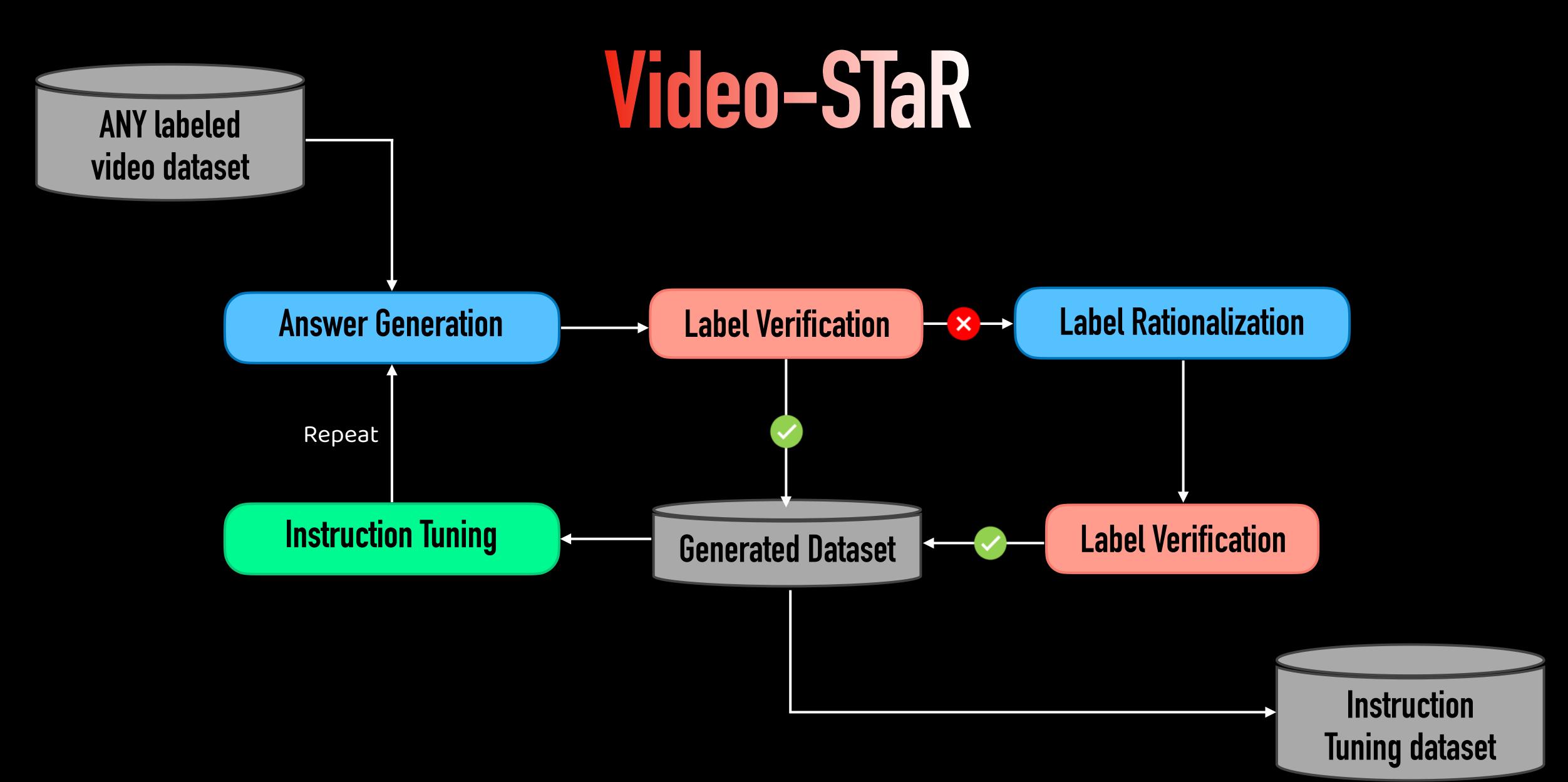
Resulting Video Instruction Tuning Datasets

What is happening in the video?
Can you describe the video in detail?
Can you describe what happens in the video?
Can you describe the video content in detail?
What is the video about?
What is the main focus of the video?
What are the main events in the video?
What is the man doing in the video?
Can you describe what is happening in the video?

Compute-Dataset Size Tradeoff



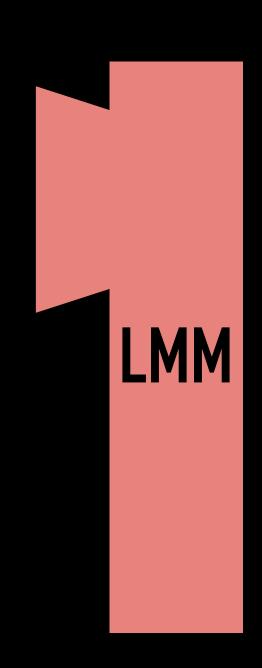
Use any video label for video instruction tuning!


Definitions

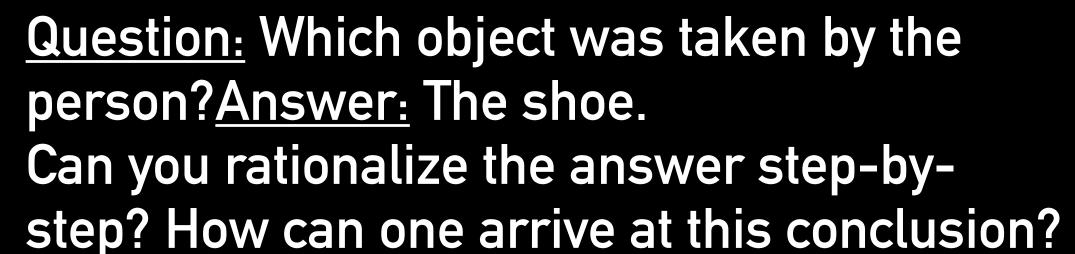
- Given: video's v_i with corresponding labels l_i : $\mathscr{D} = \{(v_i, l_i)\}_{i=1}^d$
- Goal: generate questions (q) and answer (a) pairs: $\hat{\mathcal{D}} = \{(v_i, q_i, a_i)\}_{i=1}^{d_f}$
- In cycle i, the instruction-tuned model $\hat{M}^{(i-1)\star}$ is used to generate training data.
- In cycle i, the instruction-tuned model $\hat{M}^{i\star}$ is produced, by training on the generated data.

Our Source Datasets

Source	Videos	Labels	Avg. Dur.	Source Task
Kinetics700 (2020)	650K	700	5.1	Action Recognition
STAR benchmark (2021)	22K	207	28.6	Video Reasoning, Temporal Action Localization, Bounding Box
FineDiving (2022b)	3K	1065	3.2	Action Quality Assessment, Action Sequence

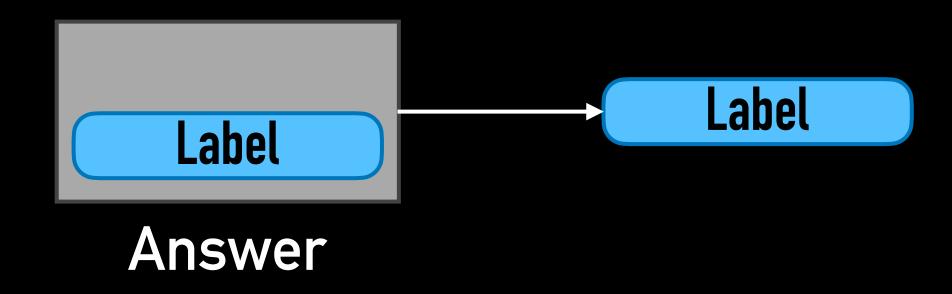

Table 1: Source Dataset Summary. Video datasets used as source datasets for instruction tuning data generation, their source tasks, and the number of unique labels.

Video-STar Answer Generation


What activity is happening in this video?

The video shows a man and a woman, both wearing helmets, swimming underwater and interacting with each other and a fish. Their helmets indicate they are engaged in helmet diving, an underwater activity that allows breathing and protection.

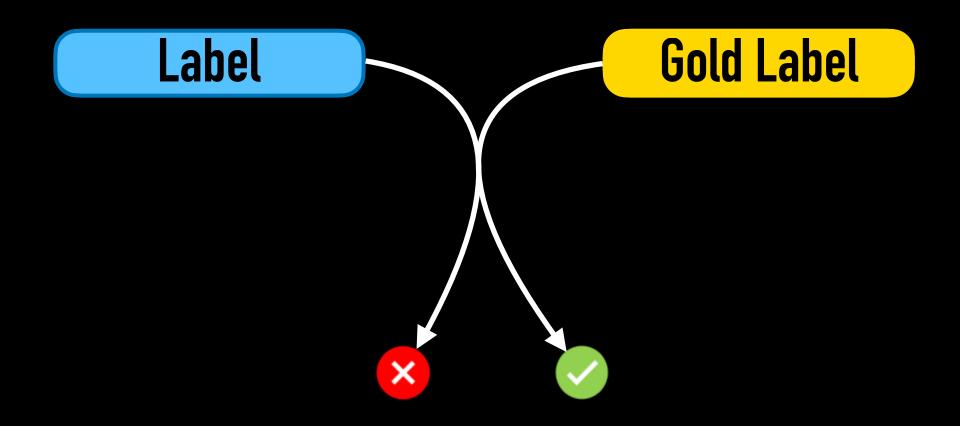
Viceo-STaR Label Rationalization


The video shows the person picking up an object from the floor, which is identified as a shoe. This action suggests the person intends to use the shoe, likely to wear it. Thus, the object taken by the person is the shoe.

LMM

Viceo-STaR Label Verifier

Parser


Tasked with extracting the different video labels from the generated text

Entity recognition, regex, fuzzy logic, etc.

Verifier

Tasked with comparing the extracted label with the GT label.

TAL/bbox -> IoU, text -> BERT embeddings Floats -> abs/rel delta

Data flow

Cycle 0

Answer Generation

Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

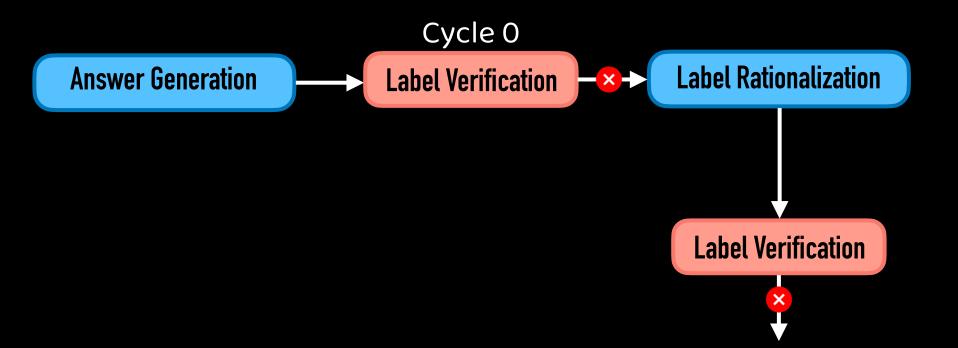
Cycle 0 **Answer Generation Label Verification**

Video-STaR Data flow

Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

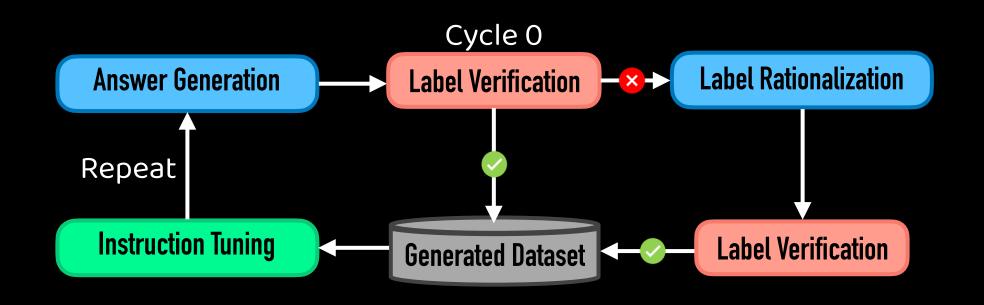
Video-STaR Data flow



[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

Data flow

Label Rationalization



[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

Data flow

Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

Data flow

Cycle 1

Answer Generation

Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

The performer in the video executes a series of flips and twists in the air, showcasing their athleticism and skill. The first flip is an inward somersault... The second flip is a 3.5 somersault,... The third flip is a tuck... The fourth flip is an entry, which is the final maneuver before the performer enters the water. Overall, the performer demonstrates a high level of skill and athleticism throughout the routine, making it a challenging and impressive display of acrobatics.

Cycle 1

Answer Generation

Label Verification

Video-STaR Data flow

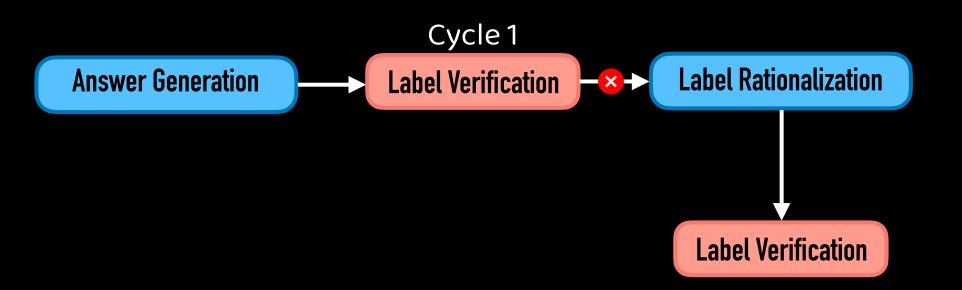
Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

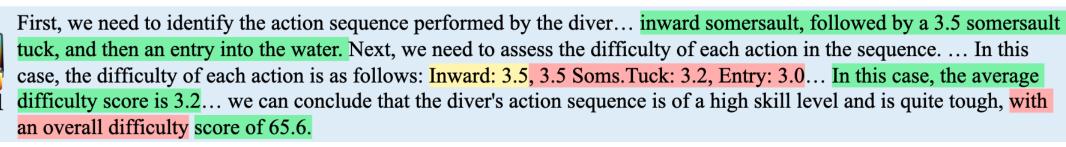
The performer in the video executes a series of flips and twists in the air, showcasing their athleticism and skill. The first flip is an inward somersault... The second flip is a 3.5 somersault,... The third flip is a tuck... The fourth flip is an entry, which is the final maneuver before the performer enters the water. Overall, the performer demonstrates a high level of skill and athleticism throughout the routine, making it a challenging and impressive display of acrobatics.

Video-STaR Data flow

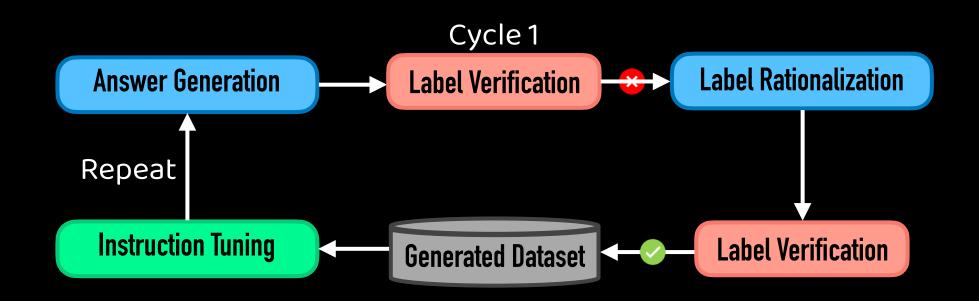
[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?


The performer in the video executes a series of flips and twists in the air, showcasing their athleticism and skill. The first flip is an inward somersault... The second flip is a 3.5 somersault,... The third flip is a tuck... The fourth flip is an entry, which is the final maneuver before the performer enters the water. Overall, the performer demonstrates a high level of skill and athleticism throughout the routine, making it a challenging and impressive display of acrobatics.

Data flow


Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?



Data flow

Label Rationalization

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100. Answer: Action Sequence: Inward, 3.5 Soms. Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6. Can you explain step-by-step how one can arrive at this conclusion?

The performer in the video executes a series of flips and twists in the air, showcasing their athleticism and skill. The first flip is an inward somersault... The second flip is a 3.5 somersault,... The third flip is a tuck... The fourth flip is an entry, which is the final maneuver before the performer enters the water. Overall, the performer demonstrates a high level of skill and athleticism throughout the routine, making it a challenging and impressive display of acrobatics.

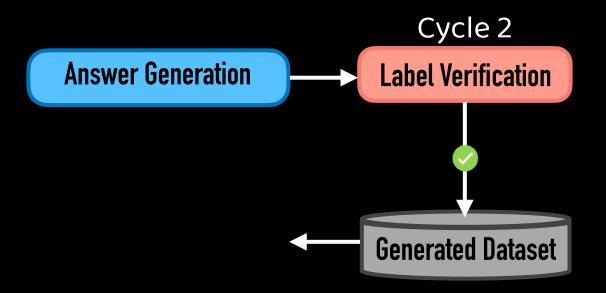
Cycle 2

Answer Generation

Video-STaR Data flow

Answer Generation

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100.. Can you explain step-by-step how one can arrive at this conclusion?



First, we need to identify the action somersault, followed by a 3.5 someton to a 3.5 somersault tuck is 3.2... First, we need to identify the action sequence performed by the diver. In this case, the diver performs an inward somersault, followed by a 3.5 somersault tuck, and then an entry into the water... The action difficulty score for a inward

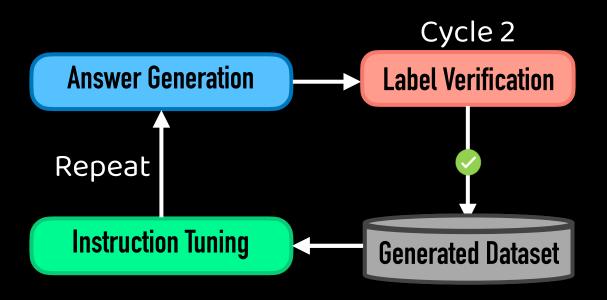
Cycle 2 we can conclude that the diver's action sequence is of a high skill level and is quite tough, with an overall score of 64.68

[Label] 65.6

Data flow

Answer Generation

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100.. Can you explain step-by-step how one can arrive at this conclusion?



First, we need to identify the action somersault, followed by a 3.5 someton to a 3.5 somersault tuck is 3.2... First, we need to identify the action sequence performed by the diver. In this case, the diver performs an inward somersault, followed by a 3.5 somersault tuck, and then an entry into the water... The action difficulty score for a inward

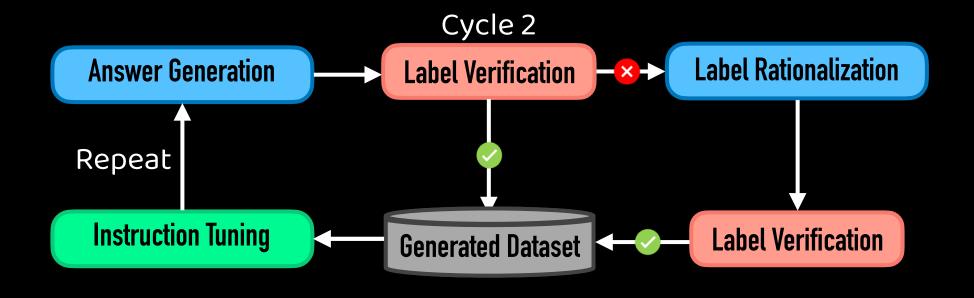
Cycle 2 we can conclude that the diver's action sequence is of a high skill level and is quite tough, with an overall score of 64.68

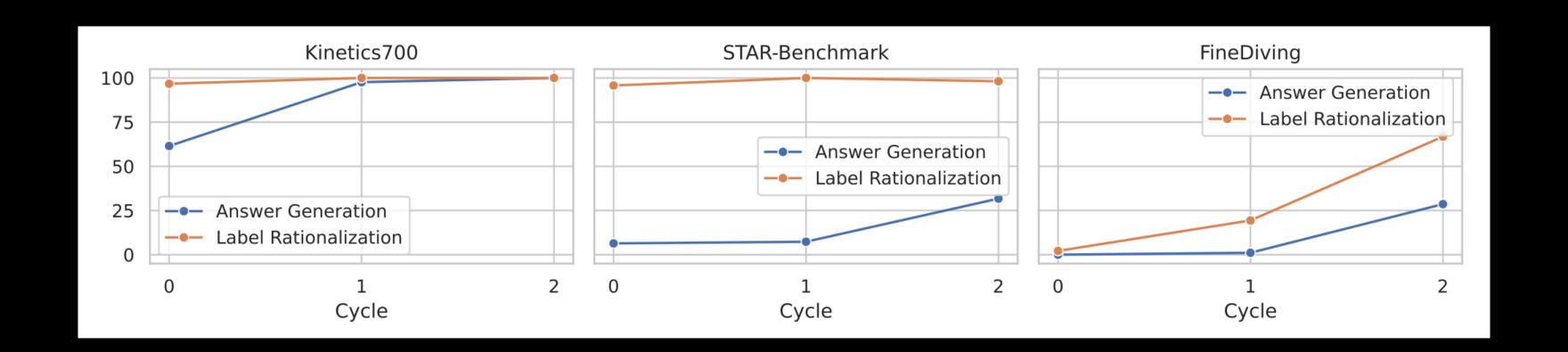
[Label] 65.6

Data flow

Answer Generation

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100.. Can you explain step-by-step how one can arrive at this conclusion?


First, we need to identify the action somersault, followed by a 3.5 someton to a 3.5 somersault tuck is 3.2... First, we need to identify the action sequence performed by the diver. In this case, the diver performs an inward somersault, followed by a 3.5 somersault tuck, and then an entry into the water... The action difficulty score for a inward



Cycle 2 we can conclude that the diver's action sequence is of a high skill level and is quite tough, with an overall score of 64.68

[Label] 65.6

Data flow

Source/Generated Datasets

	Kinetics700	STAR-Benchmark	FineDiving		
Video					
Question	What type of activity is being per- formed in this video?	Which object was put down by the person?	On a scale from 1-100, how would you evaluate the execution of the actions in the video?		
Generated Answer	In the video, a man is seen holding a large axe and swinging it around while a crowd watches. He then proceeds to hit a block of wood with the axe. Based on these observations, it can be concluded that the activity is chopping wood.	In the video, the person is seen picking up a bag and putting it down on the floor. After that, he picks up a book and puts it down on the floor. Based on this information, we can conclude that the person put down the bag and picked up the book.	First, we identify the diver's action sequence: inward somersault entry into the water. Evaluating each movement's difficulty, we assign inward somersault: 2.5, By averaging these scores the overall score is 63.0 out of 100.		
Label	Smashing	The bag.	Overall Score 63.0		

Video-STaR Results

Baselines:

- Video-LLaVA: Source model
- Video-LLaVA+: Utilize the same datasets, and convert to QA using templates
- Video-LLaVA-Gemini: Use Gemini to label 1000 examples per dataset (distillation comparison)

TempCompass

	Action		Direction		Speed		Event	Attribute Change			ge	Avg.
	Fine	Coarse	Obj.	Cam.	Abs.	Rel.	Order	Color	Size	Both	Other	
Random	39.7	40.1	39.8	39.0	40.8	42.0	41.5	40.4	39.9	38.9	39.4	40.5
mPLUG-Owl (2023)	48.8	66.1	38.7	36.8	42.2	38.4	42.0	41.7	44.7	41.9	39.9	44.4
Video-LLaVA (2023)	63.4	93.5	36.1	34.8	42.7	26.5	39.1	52.6	37.1	43.3	33.3	45.7
Video-LLaVA ⁺	62.1	93.0	35.0	32.6	41.1	38.7	36.4	59.0	40.2	36.7	44.4	47.2
${ m Vid} ext{-}{ m LLaVA}^{Gemini}$	30.7	30.1	37.8	40.0	41.8	42.4	21.5	50.4	49.9	38.0	37.4	38.2
Video-STaR	68.6	94.1	35.8	38.0	38.7	37.6	37.1	53.8	48.5	45.0	55.6	50.3(+10%)
Gemini-1.5 (2024)	94.8	98.4	43.6	42.4	65.3	48.7	55.6	79.5	59.8	70.0	66.7	66.0

Table 3: Comparison with state-of-the-art methods on TempCompass. TempCompass (Liu et al., 2024) assesses the temporal understanding capabilities of video language models across five dimensions Video-STaR improves Video-LLaVA performance on TempCompass by 10%.

Adapted Datasets

Methods	Kinetics'	700-QA	STAR-be	nch-QA	FineDiving-QA		
	Accuracy	Score	Accuracy	Score	Accuracy	Score	
Video-LLaVA	50.0	3.2	24.9	2.6	17.6	2.2	
Video-LLaVA+	49.5	3.2	28.8	2.8	19.1	2.2	
${\sf Vid ext{-}LLaVA}^{Gemini}$	41.9	2.9	22.3	2.6	16.3	2.1	
Video-STaR	59.9 (+20%)	3.5 (+10%)	33.0 (+33%)	2.9 (+12%)	20.2 (+15%)	2.3 (+5%)	

Table 5: **Adapted Dataset Performance.** Performance metrics on test sets of Kinetics700, Fine-Diving, and STAR-benchmark datasets via converting them to QA following Maaz et al. (2023). Video-STaR shows significant improvement over Video-LLaVA and Video-LLaVA⁺, showing the potential of Video-STaR for LVLM adaptation to new tasks.

Ablations

Ablations	Kinetics7	00-QA	STAR-ben	ch-QA	FineDiving-QA		
Adiaudis	Accuracy	Score	Accuracy	Score	Accuracy	Score	
Video-STaR	59.9	3.5	33.0	2.9	20.2	2.3	
- Rationalization	59.8	3.5	26.6	2.7	12.8	2.0	
- Generation	50.0	3.2	24.9	2.6	17.6	2.2	

Table 6: **Ablations on Adapted Datasets.** Performance metrics on test sets of Kinetics700, STAR-benchmark, and FineDiving datasets. Label Rationalization impacts mostly the difficult datasets, such as FineDiving, whose initial Answer Generation yields are low.

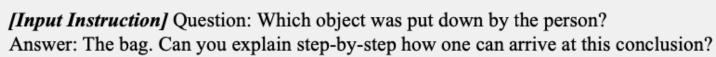
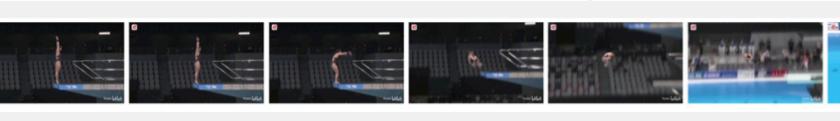

Ablations	MSVD-QA		MSRVTT-QA		TGIF-	QA	ActivityNet-QA	
Abiauons	Accuracy	Score	Accuracy	Score	Accuracy	Score	Accuracy	Score
Video-STaR	71.3	4.0	58.2	3.5	46.8	3.3	42.2	3.3
- Rationalization	70.6	3.9	57.5	3.5	47.7	3.4	42.2	3.3
- Generation	69.7	3.9	57.4	3.5	46.5	3.3	43.2	3.4

Table 7: **Ablations on Zero-Shot Benchmarks**. In simpler benchmarks, Answer Generation proved more critical for zero-shot generalization than Label Rationalization.

Failure Cases: Hallucination

STAR-benchmark



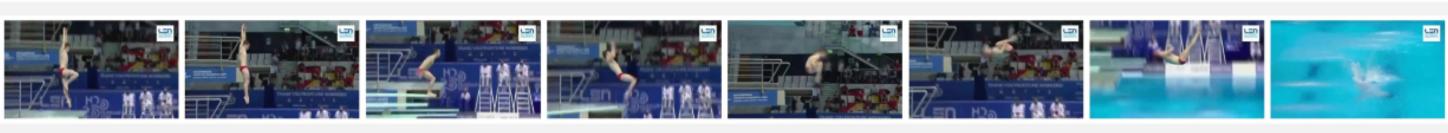
Sure, in the video, the person is seen sitting on a red sofa and talking on the phone. He then stands up and walks towards a table where he takes a dish and puts it on the table. He then proceeds to wash the dish and places it on the rack to dry.

[Label]: Took.

FineDiving

[Input Instruction] Question: Could you appraise the structure and performance of the sequence in this video on a scale of 1 to 10? Answer: Reasoning: Action Sequence: Inward->3.5 Soms.Tuck->Entry, action difficulty: 3.2 Final Label: Overall Score 60.8.

Can you explain step-by-step how one can arrive at this conclusion?



Sure, I'd be happy to explain the reasoning behind the final label. The first step is to evaluate the action sequence. In this case, the sequence is Inward->3.5 Soms. Tuck->Entry. The difficulty of this sequence is 3.2. The second step is to evaluate the overall score. The overall score is based on a combination of factors, including the difficulty of the action sequence, the execution of the moves, and the overall style and artistry of the performance. Based on the information provided, the overall score is 60.8.

Overall, the conclusion is that the video showcases a skilled diver performing a series of flips and twists with precision and grace, earning an overall score of 60.8 out of 100.

[Label]: Overall Score 60.8. [Additional Labels]: Action Sequence: Inward->3.5 Soms.Tuck->Entry. Action Difficulty: 3.2.

LVLMs as a judge in Olympic events?

[Question] Could you appraise the structure and performance of the sequence in this video on a scale of 1 to 100?

Sure, I'd be happy to explain the reasoning behind the final label. The first step is to evaluate the action sequence. In this case, the sequence is Back->3.5 Soms. Tuck->Entry. The first action, Back, is a basic backward somersault, which is a 1 on the difficulty scale. The second action, 3.5 Soms. Tuck, is a more advanced move that involves a series of flips and twists, which is a 4 on the difficulty scale. Finally, the third action, Entry, is the most difficult part of the sequence, as it involves diving into the water from a high platform. This is a 5 on the difficulty scale.

Next, we need to evaluate the action difficulty. The difficulty scale ranges from 1 to 10, with 1 being the easiest and 10 being the most difficult. In this case, the difficulty scale is 3.3.

Finally, we need to combine the action sequence and action difficulty to arrive at an overall score. In this case, the overall score is 79.2.

Overall, the conclusion is that the sequence in this video is quite impressive, with a high level of difficulty and execution.

[Label]: Overall Score 85.78.

[Additional Labels]: Action Sequence: Reverse->3.5 Soms.Tuck->Entry. Action Difficulty: 3.5.

[Question] How would you rate the complexity and accuracy of the performance in this video on a scale from 1 to 100?

Thanks for tuning in!

https://orrzohar.github.io/projects/video-star/

SCAN ME

Xiaohan Wang

