

Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting

Qi Li^{1*}, Zhenyu Zhang^{1*}, Lei Yao¹, Zhaoxia Li³, Tianyi Zhong⁴, Yong Zhang^{1,2}

¹Beijing University of Posts and Telecommunications

²Beijing Key Laboratory of Work Safety Intelligent Monitoring

³China Unicom Cloud Data Co., Ltd.

⁴University of Melbourne

Background

Objective of probabilistic multivariate time series (MTS) forecasting:

Given history MTS data $x_{1:H} = \{x_1, x_2, ..., x_H\} \in \mathbb{R}^{C \times H}$, probabilistic MTS forecasting tackles the problem of **estimating the distribution** of the subsequent future time series $y_{1:L} = \{p(y_1), p(y_2), ..., p(y_L)\} \in \mathbb{R}^{C \times L}$.

Uncertainty in point forecasting:

$$X_{nf}$$
: $X = X_{nf} + \epsilon_X$. X_{nf}

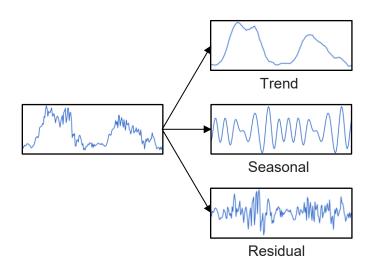
 ϵ_X : the inherent noise part

 X_{nf} : the ideal noise-free part contains components with clear temporal patterns, such as trend components X_T and seasonal components X_S . In an ideal scenario, the inherent noise ϵ_X corresponds to the residual component, X_R .

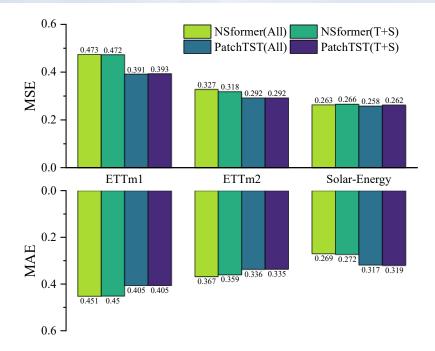
$$X_R = X_r + \epsilon_X'$$

 X_r : the non-noise component of X after removing the evident trend and seasonal information,

 ϵ_X' : the noise component of ϵ_X , excluding the noise that remains in X_T and X_S .



Motivation



• Point forecasting models exhibit varying capabilities in modeling $X_T + X_S$ and X_T .

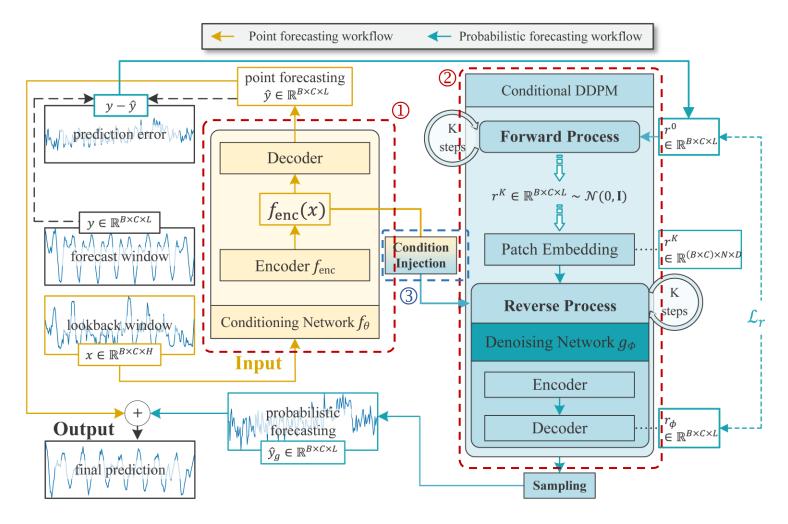


Residual components X_r have **higher uncertainty**.

Divide-and-conquer

Decoupling deterministic and uncertain components

Framework



<u>D</u>iffusion-based <u>D</u>ecoupled <u>D</u>eterministic and <u>Uncertain</u> (D3U) framework:

High deterministic components modeled by pretrained point forecasting model +

Components with high-uncertainty modeled by the conditional denoising diffusion probabilistic model (DDPM) =

Better probabilistic forecasts

① Point forecasting model

② Conditional DDPM

③ Condition injection

Framework

Conditional network f_{θ} :

Extracting useful information from input series x_h .

Prediction error

Conditional DDPM

Forward Process

 $r^K \in \mathbb{R}^{B \times C \times L} \sim \mathcal{N}(0, \mathbf{I})$

Patch Embedding

Reverse Process

Denoising Network g_{ϕ}

Encoder

Decoder

Sampling

steps

Condition

Injection

 $\in \mathbb{R}^{B \times C \times L}$

 $\in \mathbb{R}^{(B \times C) \times N \times D}$

steps

 $r_{\phi} \in \mathbb{R}^{B \times C \times L}$

Conditional DDPM:

- Modeling the distribution of residual components in the prediction target
- Prediction error of the conditioning network is used as the residual:

$$r_{1:L}^0 \coloneqq y - \hat{y} = y - f_{\theta}(x_h)$$

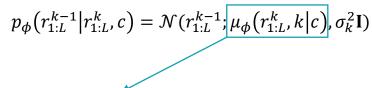
• Condition provided by the encoder of f_{θ} :

$$c = f_{\rm enc}(x_h)$$

Residual prediction:

$$p_{\phi}(r_{1:L}^{0:K}|c)$$

$$= p_{\phi}(r_{1:L}^{K}) \prod_{k=1}^{K} p_{\phi}(r_{1:L}^{k-1}|r_{1:L}^{k},c)$$



$$\mu_{\phi}(r_{1:L}^{k}, k | c) = \frac{\sqrt{\alpha_{k}}(1 - \bar{\alpha}_{k-1})}{1 - \bar{\alpha}_{k}} r_{1:L}^{k} + \frac{\sqrt{\bar{\alpha}_{k-1}}\beta_{k}}{1 - \bar{\alpha}_{k}} r_{\phi}(r_{1:L}^{k}, k | c)$$

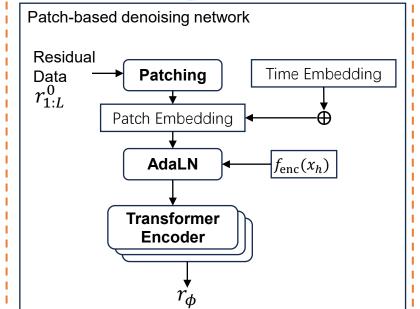


Table 1: Performance comparison on six real-world datasets based on MSE and MAE. The **best**/second results are highlighted in **bold**/underline, respectively. Lower MSE and MAE values indicate better performance. *SparveVQ* is used as the point forecasting model in the D³U (ours).

Model	Dataset	ETTm1		ETTm2		Weather		Solar-Energy		Electricity		Traffic	
	Method	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	NSformer(2022b)	0.440	0.430	0.277	0.343	0.226	0.270	0.266	0.270	0.191	0.295	0.653	0.360
Point	TimesNet(2023)	0.374	0.387	0.249	0.309	0.219	0.261	0.296	0.318	0.184	0.289	0.617	0.336
forecasting	DLinear(2023)	0.380	0.389	0.284	0.362	0.237	0.296	0.320	0.398	0.196	0.285	0.598	0.370
	PatchTST(2023)	0.370	0.390	0.251	0.312	0.223	0.258	0.259	0.321	0.205	0.307	0.463	0.311
	SparseVQ(2024)	0.363	0.380	0.242	0.302	0.225	0.258	0.256	0.286	0.182	0.267	0.480	0.300
	iTransformer(2024)	0.377	0.391	0.250	0.309	0.221	0.254	0.233	0.261	0.164	0.255	0.418	0.284
	TimeGrad(2021)	1.716	1.057	1.385	0.732	0.885	0.551	1.211	1.004	0.645	0.723	0.932	0.807
Probabilistic forecasting	CSDI(2021)	0.867	0.690	1.291	0.576	0.842	0.523	0.848	0.818	0.553	0.795	0.921	0.678
	TimeDiff(2023)	0.796	0.577	0.284	0.342	0.277	0.331	1.169	0.936	0.730	0.690	1.465	0.851
	TMDM(2024)	0.607	0.558	0.524	0.493	0.244	0.286	0.295	0.317	0.222	0.329	0.721	0.411
	ours	0.363	0.386	0.241	0.302	0.222	0.264	0.237	0.270	0.179	0.267	0.468	0.299

- With SparseVQ as the conditional network, D³U retains the point forecasting performance of the conditional network employed, and even performs better on high-dimensional datasets (e.g. Solar-Energy)
- On point forecasting task, D³U achieves a 28% improvement in MSE and a 21% improvement in MAE compared to the current state-of-the-art (SOTA) probabilistic MTS long-term forecasting baseline

Table 2: Performance comparisons on six real-world datasets regarding CRPS and CRPS_{sum}. The **best**/<u>second</u> results are highlighted in **bold**/<u>underline</u>. Lower CRPS and CRPS_{sum} values indicate better performance. SparveVQ is used as the point forecasting model in the D³U (ours).

Model	Dataset	ETTm1		ETTm2		Weather		Solar-Energy		Electricity		Traffic	
	Method	CRPS	$CRPS_{\mathrm{sum}}$	CRPS	$CRPS_{\mathrm{sum}}$	CRPS	$CRPS_{\mathrm{sum}}$	CRPS	$CRPS_{\mathrm{sum}}$	CRPS	$CRPS_{\mathrm{sum}}$	CRPS	$CRPS_{\mathrm{sum}}$
	TimeGrad(2021)	0.665	0.996	0.785	1.051	0.482	0.503	0.783	1.167	0.503	1.452	0.657	1.683
Probabilistic Forecasting	CSDI(2021)	0.773	0.852	0.625	0.782	0.508	0.465	0.649	0.681	0.465	0.823	0.612	1.275
	TimeDiff(2023)	0.454	0.846	0.316	0.180	0.293	0.400	0.900	1.164	0.475	0.594	0.671	0.823
	TMDM(2024)	0.429	0.633	0.380	0.226	0.226	0.292	0.375	0.267	0.446	0.137	0.552	0.179
	ours	0.285	0.574	0.243	0.141	0.207	0.283	0.186	0.266	0.202	0.160	0.232	0.186

D³U presents a superior probabilistic forecasting performance, showing a 40% improvement in CRPS and a 5% improvement in CRPS_{sum} compared to the SOTA baseline.

Table 3: Performance promotion by applying D^3U to TMDM.

Mode		Т	MDM			TMD	M (D ³ U))
Datasets	MSE	MAE	CRPS	$CRPS_{sum}$	MSE	MAE	CRPS	$CRPS_{sum}$
ETTm1	0.607	0.558	0.429	0.633	0.441	0.432	0.324	0.616
ETTm2	0.524	0.493	0.380	0.226	0.317	0.399	0.302	0.147
Weather	0.244	0.286	0.226	0.292	0.215	0.267	0.196	0.273
Solar-Energy	0.295	0.317	0.375	0.267	0.269	0.299	0.328	0.260
Electricity	0.222	0.329	0.446	0.137	0.216	0.328	0.381	0.157
Traffic	0.721	0.411	0.552	0.179	0.678	0.402	0.472	0.207

- To demonstrate the effectiveness of the D³U framework, a same setting as TMDM is applied to D³U: using NSformer and MLP as point prediction models and denoising diffusion networks, respectively
- Compared to the original TMDM, the use of the D³U framework has resulted in significant improvements in both point and probabilistic MTS long-term forecasting tasks

Table 4: MSE, MAE and CRPS scores for different variants of the proposed method.

Ablation	Mode	ETTm1			So	olar-Ene	rgy	Traffic		
Study	$(f_{\theta} + g_{\phi})$	MSE	MAE	CRPS	MSE	MAE	CRPS	MSE	MAE	CRPS
Denoise Network	$\begin{array}{c} \mathrm{SVQ} + \mathrm{MLP}^a \\ \mathrm{SVQ} + \mathrm{UNet}^b \end{array}$	0.372 0.385	0.396 0.410	0.294 0.301	0.330 0.267	0.313 0.266	0.242 0.219	0.525 0.469	0.331 0.301	0.297 0.289
Structure Design		0.370 0.366	0.390 0.385	0.295 0.290	$\frac{0.237}{0.238}$	0.281 0.271	0.193 0.187	0.483 0.486	0.307 0.315	$\frac{0.240}{0.244}$
Framework Design		0.859 0.408	0.699 0.421	0.516 0.312	0.348 0.259	0.302 0.301	0.251 0.241	0.687 0.479	0.396 0.308	0.302 0.251
	Ours	0.361	0.385	0.284	0.236	0.270	0.186	0.468	0.299	0.232

¹ SVQ is the abbreviation for SparseVQ.

- **Decoupling scheme**: Whether using the original input series or the output of the point forecasting model as the learning objective of the diffusion model, the performance has significantly decreased (Framework Design). Decoupling the deterministic and uncertain components is important.
- Patch-based denoising design: Patch-based denoising network (Denoise Network) employing AdaLN (Structure Design) exhibits a stronger capability in modeling the high-uncertainty component.

a means the MLP serves as the denoising network in the TMDM model and consists of four linear layers; b means the UNet, used as the denoising network in the TimeDiff model, is built using a convolutional neural network-based UNet architecture. 3 c marks PatchDN based on the cross-attention method; d marks PatchDN based on the in-context method.

⁴ e marks the framework variant that models the entire data distribution; f marks the framework variant that employs \hat{y} as the guidance.

Table 5: Performance promotion by applying the proposed framework to point forecasting models.

Dataset		ETTm1		So	olar-Ene	rgy	Traffic			
Method	MSE	MAE	CRPS	MSE	MAE	CRPS	MSE	MAE	CRPS	
NSformer NSformer (D ³ U)	0.440 0.436	0.430 0.427	0.317	0.266 0.268	0.270 0.272	0.202	0.653 0.657	0.360 0.367	0.284	
PatchTST PatchTST (D ³ U)	0.370 0.387	0.390 0.405	0.299	0.259 0.233	0.321 0.281	0.221	0.463 0.452	0.311 0.297	0.234	
SparseVQ SparseVQ (D ³ U)	0.363 0.361	0.380 0.385	0.284	0.256 0.237	0.286 0.270	0.185	0.480 0.475	0.300 0.309	0.232	

^{1 –} means that point forecasting models do not have probabilistic forecasting abilities. The CRPS value degrades to the Normalized Mean Square Error (NMAE), which is omitted here.

• **Framework generality**: The D³U framework can be used as a plug-and-play solution for point forecasting models and provide them with probabilistic forecasting capabilities while retaining their original point forecasting ability

Summary

1. Novel Complementary Modeling Paradigm

 We propose a novel complementary modeling approach that combines point forecasting models and probabilistic forecasting models from the perspective of decoupling the deterministic and uncertain components of time series data.

2. Conditional Diffusion Framework

- Within the D3U framework, we design a patch-based denoising network, PatchDN, to enhance
 the diffusion model's ability to represent the high-uncertainty components in time series data.
- Fewer diffusion steps required by focusing only on uncertain components

3. Plug-and-Play Architecture

- Seamless integration with existing point forecasting and diffusion models
- Simultaneously improves both probabilistic and point forecasting performance

Thank you

