ADAPT: Attentive Self-Distillation and Dual-Decoder Prediction Fusion for Continual Panoptic Segmentation

Ze Yang ¹, Shichao Dong ¹, Ruibo Li ¹, Nan Song ¹, Guosheng Lin ¹

¹ College of Computing and Data Science, Nanyang Technological University

Introduction

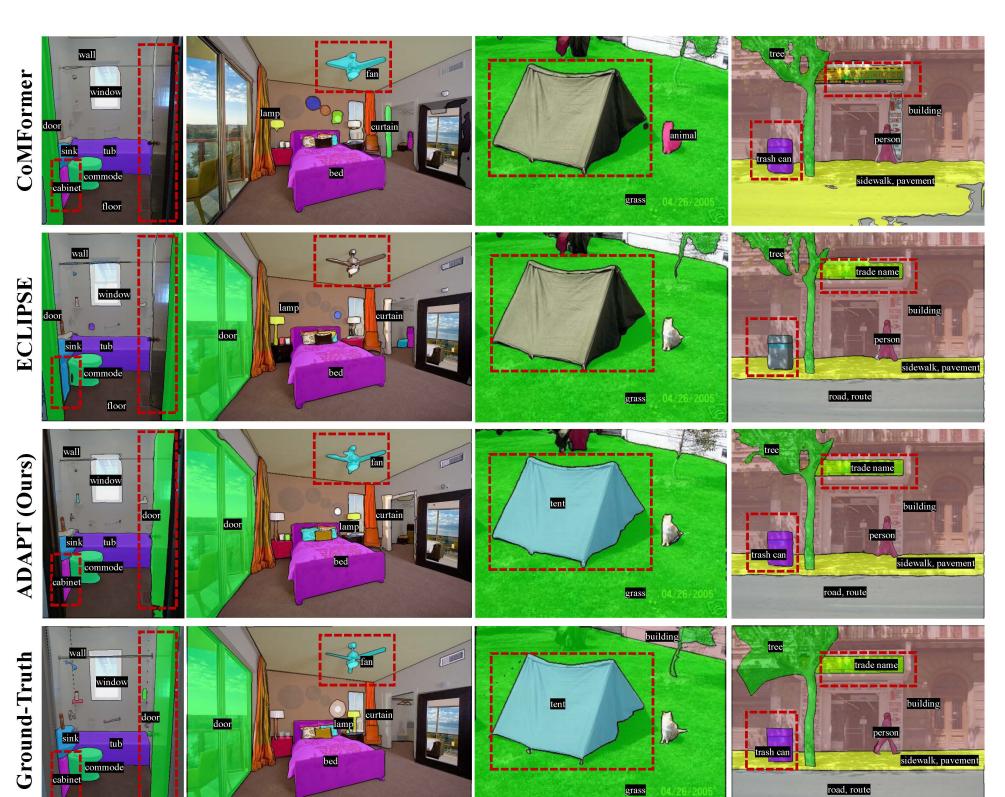
Continual panoptic segmentation (CPS) aims to extend an existing model to tackle unseen tasks while retaining its old knowledge. However, existing CPS methods generally suffer from:

- Catastrophic forgetting
- High computation (e.g., dual-model distillation)
- Scalability issues (e.g., additional prompts)

Our contributions:

- Efficient adaptation via frozen shared weights
- Attentive self-distillation to retain old knowledge
- Query-Level Fusion (QLF) avoids scale mismatch
- State-of-the-art on ADE20K and COCO

Visualization & Experiment Results



Training Time

CoMFormer: 3.36 hrs ECLIPSE: 3.48 hrs

ADAPT: 2.27 hrs (-35%)

Reference

[CoMFormer] Cermelli, Fabio, Matthieu Cord, and Arthur Douillard. "Comformer: Continual learning in semantic and panoptic segmentation." CVPR 2023.

[ECLIPSE] Kim, Beomyoung Joonsang Yu, and Sung Ju Hwang. "Eclipse: Efficien continual learning in panoptic segmentation with visual promptuning." CVPR 2024.

Qualitative visualization for ADE20K 100-10

Method	100-5 (11 tasks)			100-10 (6 tasks)			100-50 (2 tasks)		
	1-100	101-150	all	1-100	101-150	all	1-100	101-150	all
FT†	0.0	1.3	0.4	0.0	2.9	1.0	0.0	25.8	8.6
MiB† Cermelli et al. (2020)	24.0	6.5	18.1	27.1	10.0	21.4	35.1	19.3	29.8
PLOP [†] Douillard et al. (2021)	28.1	15.7	24.0	30.5	17.5	26.1	41.0	26.6	36.2
CoMFormer† Cermelli et al. (2023)	34.4	15.9	28.2	36.0	17.1	29.7	41.1	<u>27.7</u>	$\frac{36.7}{35.6}$
ECLIPSE‡ Kim et al. (2024)	<u>41.1</u>	<u>16.6</u>	<u>32.9</u>	<u>41.4</u>	<u>18.8</u>	<u>33.9</u>	<u>41.7</u>	23.5	35.6
ECLIPSE* Kim et al. (2024)	39.5	14.7	31.2	41.2	16.5	33.0	39.9	21.1	33.6
ADAPT (Ours)	42.3	19.8	34.8	42.2	26.3	36.9	42.5	27.8	37.6
joint	43.4	32.9	39.9	43.4	32.9	39.9	43.4	32.9	39.9

Continual panoptic segmentation results (PQ) on ADE20K

Queries Que

1. Efficient Adaptation

- Freeze image encoder & pixel decoder → shared forward pass
- Only update cross-attention & FFN in transformer decoder

2. Attentive Distillation

- Distills only from informative queries (object regions)
- Weighted by background confidence using $\alpha(1-\hat{p}_x^{t-1}(i,\emptyset))^{\gamma}$

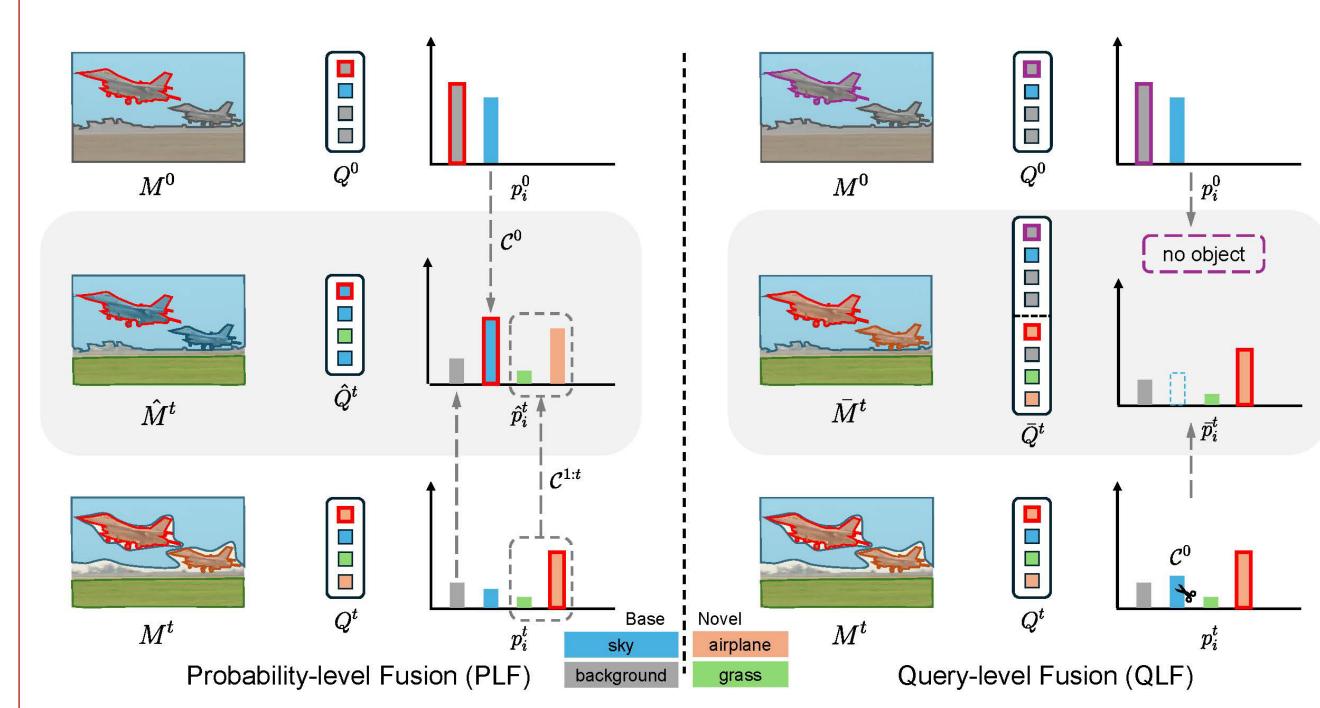
3. Query-Level Fusion (QLF)

- Use fixed decoder for base classes
- Use adapted decoder for novel classes

Prediction fusion

Avoid probability-level scale mismatch

Query-Level Fusion



Probability-level Fusion (PLF) vs. Query-level Fusion (QLF)

Query-Level Fusion avoids probability-level conflicts by assigning distinct responsibilities to the two decoders:

• The base decoder only predicts base classes.

{background, sky, grass, airplane

The adapted decoder only predicts novel classes.

During inference

- All queries (e.g., 8 in total) from both decoders are combined.
- A standard panoptic fusion (like in Mask2Former) is applied to select final segments.
- Overlapping or redundant predictions are suppressed, similar to non-maximum suppression (NMS).