

Sparse RAG

Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection

Authors: Yun Zhu¹, Jia-Chen Gu³, Caitlin Sikora², Ho Ko², Yinxiao Liu¹, Chu-Cheng Lin², Lei Shu¹, Liangchen Luo¹, Lei Meng², Bang Liu⁴, Jindong Chen¹

¹Google DeepMind, ²Google, ³University of California, Los Angeles, ⁴Université de Montréal & Mila

Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG): A technique for generating output structures while using retrieved nearest-neighbor structures as a reference.

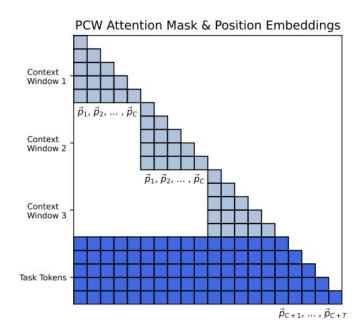
- Two steps: retrieval + generation
- Retrieval:
 - Key:
 - BM25, dense embedding (GTR, XTR, Contriever, etc.)
 - Value
 - Token embedding: knnLM, Spalm
 - Dense embedding: TOME
 - Raw text: Realm, RAG, FID, RETRO, MARGE, DENSPI, DENSEPHRASES
- Generation
 - Concat: Realm, RAG, FID(fusion in decoder)
 - Cross attention: Retro, MeMTransformer, TOME, MARGE

As the LLM becomes larger and larger, it is less practical to introduce extra encoder like FID or RETRO.

• RAG (concat input text) is becoming popular for being simple and practical.

Challenge #1 Latency

- Low Efficiency
 - Native "concat" of documents results in long context
 - Computational costs quadratic in context length
- Existing Solutions
 - Parallel context window (PCW) [2]
 - Block-wise attention. No need to re-train.
 - Downside:
 - Helps on prefill, but not decoding
 - Quality Issues



Challenge #2: Quality

- Error prone to irrelevant documents
 - LLM is not pre-trained to resist the wrong information
 - Quality bottleneck of "retriever"
- Existing Solutions
 - External Ranker/classifier e.g. [1]
 - Train a separate T5 classifier
 - Downside:
 - Maintain extra model & complex flow
 - Should be large enough (~1B) to get good quality (not good for resource constrained scenario like on-device)

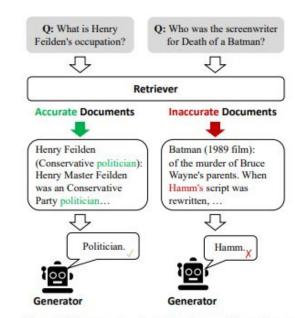


Figure 1: The examples show that a low-quality retriever is prone to introducing a substantial amount of irrelevant information, impeding the generators from acquiring accurate knowledge and potentially misleading them.

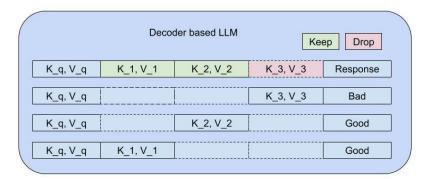
Sparse RAG

- Sparse RAG
 - Mask inter-document attention scores
 - Number decode memories < Number prefill memories
- Self-selecting: Infuse "corrective" capability into LLM without extra model

Approach	Corrective	No extra Model	Prefill Efficiency	Decode efficiency
RAG	NO	YES	NO	NO
Corrective RAG	YES	NO	NO	NO
PCW RAG	NO	YES	YES	NO
Sparse RAG	YES	YES	YES	YES

Sparse RAG Process

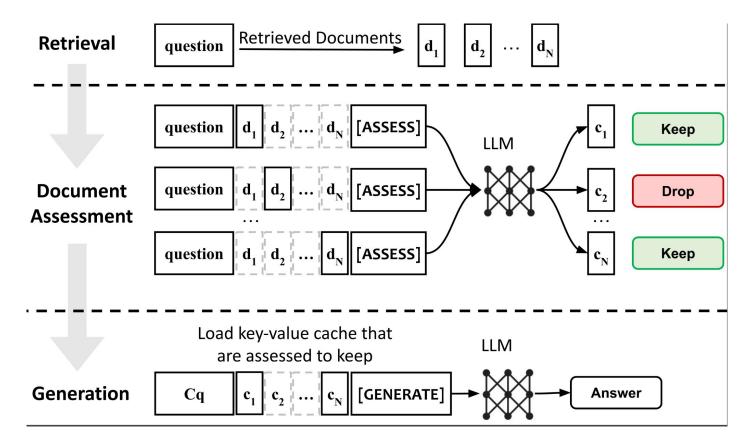
- 1. Create both "classification" and "generation" tasks.
- Treat each context independently with PCW (block-wise attention mask).
- 3. Rate each context and select top contexts in parallel (either topK or quality threshold).
- 4. Perform generation using top contexts.
- Use block-wise attention mask for generation so you can reuse the KV cache for top documents.



Question	Memory 1	Memory 2	Memory 3	Response
Question	Memory 1	Good		
Question	Memory 2	Good		
Question	Memory 3	Bad		

Inputs

Overview



Data Augmentation with LLMs

- For datasets that do not include golden per-context relevance labels, we use a multi-LLM labeling system to create them.
- We created a human-labeled ground truth subsample of the Natural Questions dataset and compared different model combinations to find the best performing labeling system, settling on Gemini Ultra with Palm2 XL as a critic model.

Auto-label Rater model	ing method Critic model	Average F1	F1 Label 0	F1 Label 1
PALM2 XL PALM2 XL	n/a PALM2 XL	0.729 0.781	0.765 0.820	0.694 0.741
Gemini Ultra	n/a	0.761	0.807	0.716
Gemini Ultra	Gemini Ultra	0.704	0.747	0.660
PALM2 XL	Gemini Ultra	0.728	0.776	0.680
Gemini Ultra	PALM2 XL	0.821	0.861	0.781

Experimental Setup

- Datasets
 - PopQA, QMSum, TriviaQA, HotpotQA
- Baselines
 - RAG Concatenation RAG w/ full attention
 - LLM Lingua Compressed prompt w/ full attention
 - o PCW RAG Parallel Context Window, no relevance assessment
 - Corrective RAG Separate T5 relevance classifier
- Experiment config
 - XXS Gemini + LoRA (relevance classification and generation task w/ block-wise attention)
- Inference Setup and Metrics
 - Latency
 - Prefill stage: Encoding Speed (ES) (tokens per second t/s)
 - Decoding stage: Decoding Speed (DS) (tokens per second t/s)
 - Quality
 - Exact Match (EM) (binary exact match, averaged over responses)
 - RougeLSum for summarization quality
 - F1: Token-wise F1 score for response precision = # common tokens / prediction length recall = # common tokens / target length

Main Results

Approach		PopQA				QMSum (Summarization)			TriviaQA				HotpotQA (Multi-hop)				
	Encoding Speed (t/s)	F1	Exact Match	К	Decoding Speed (t/s)	F1	Rouge Sum	К	Decoding Speed (t/s)	Exact Match	F1	К	Decoding Speed (t/s)	Exact Match	F1	К	Decoding Speed (t/s)
RAG (closed book)	139.75	5.79	0	0	23.81	15.43	12.93	0	23.81	0	8.01	0	23.81	0	5.03	0	23.81
RAG (off-the-shelf)	56.28	12.76	0.33	20	6.65	20.37	12.67	20	6.65	0	12.21	20	6.65	0	11.75	10	10.31
LLMLingua	-	12.15	1.96	7.84	-	22.28	18.37	4.45	-	2.6	16.3	9.9	-	1.33	14.67	6.5	-
RAG	56.28	69.99	65.43	20	6.65	21.43	18.2	20	6.65	46.2	53.03	20	6.65	43	55.85	10	10.31
PCW-RAG	147.58	69.54	65.04	20	6.65	20.18	16.95	20	6.65	46	53.2	20	6.65	38.83	50.03	10	10.31
CRAG	-	70.99	66.52	8.9	-	-	-	ı	-	-	-	-	-	-	-	1	-
Sparse RAG	147.58	71.16	67.71	7.84	12.28	23.96	20.1	4.45	16.05	47.05	55.1	9.9	10.18	43.5	55.3	6.5	13

Speed higher = better

Quality higher = better Input length lower = better

Conclusion

- Sparse RAG effectively addresses the computational burdens of RAG.
 - Masking inter-document attention
 - Parallel context assessment and selection
 - Efficient KV cache management
- Improves quality by attending only to highly relevant tokens.
- Outperforms baselines in latency and quality on 4 datasets.
 (long/short form generation, QA/Summarization tasks, multi-hop reasoning)
- Works with a single model that is small enough to run on-device.

Acknowledgements

Thanks to all of our collaborators!

Thanks to the conference organizers for creating this opportunity to share our findings with the broader research community.