Title

StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization

ICLR 2025

Author

Zhuoqun Li (李卓群)

Ph.D. Student (from 2022.9)

Interest LLM and retrieval-augmented generation (RAG)

Supervised by Le Sun, Xianpei Han, Hongyu Lin, and Yaojie Lu

* This work is completed in Tongyi Lab, supervised by 水德 and 翼飞

Background

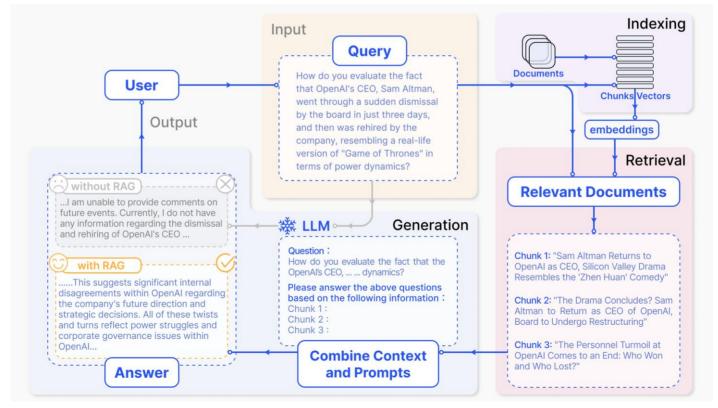
> LLM Factuality Hallucination

> The content generated by the model is inconsistent with the facts of the real world.

Category	Type	Example Dialog .	Explanation		
Factuality Hallucination	Factual	Instruction: What are Thomas Edison's main contributions to science and technology?	improved the light bulb, building on earlier desi-		
	Contradiction	Response: Thomas Edison developed the first practical tele- phone and invented the light bulb.	gns by others, and Alexander Graham Bell invented the telephone.		
	1	Instruction: What are the major environmental impacts of the construction of the Eiffel Tower?	The response erroneously states that the construction of the Eiffel Tower led to the extinction of the 'Parisian tiger' and sparked the global green architecture move-		
	Factual	Response: The construction of the Eiffel Tower in 1889 led to the extinction of the Parisian tiger, a species that played a crucial role in the region's ecosystem. Additionally, it is wid ely recognized as the event that sparked the global green architecture movement.	ment. In fact, there is no evidence of a 'Parisian ter' ever existing, making this a fabricated claim Moreover, attributing the origins of green archite ture to the Eiffel Tower is an exaggeration, as the movement has diverse roots and cannot be traced batto a single event.		

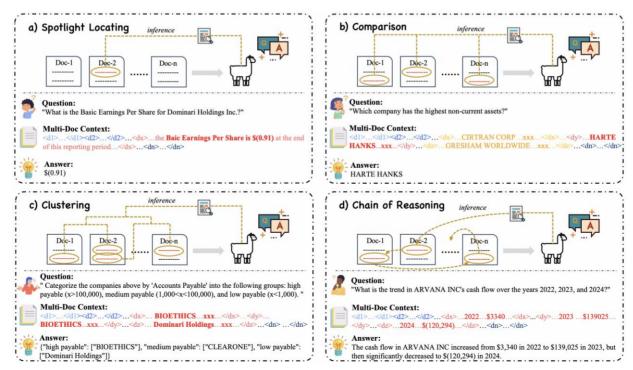
Background

- ➤ RAG: Retrieval-Augmented Generation
 - > Split documents into chunks and retrieve relevant chunks as external augmented knowledge.



Task

- ➤ Knowledge-intensive Reasoning Task
 - > Relevant information is scattered across multiple locations in the document library.
 - ➤ Need to make complex inferences based on valid information (e.g., *Financial Report Analysis*).



Task

Existing chunk-based RAG cannot effectively solve knowledge-intensive reasoning tasks.

- ➤ High-noise External Knowledge
 - > Due to scattered information, the retrieved chunks contain a significant amount of text noise.

- > Hard to Inference
 - ➤ Based on high noise external knowledge, LLM cannot establish connections between information and therefore cannot make the effective inference.

Motivation

➤ How do human beings solve knowledge-intensive reasoning tasks?

- Cognitive Load Theory
 - > Transform scattered information into structured knowledge.
 - ➤ Using structured knowledge to assist in completing reasoning tasks.

- ➤ Cognitive Fit Theory
 - ➤ Use different types of structures for different types of tasks.
 - For example: Chunk, Table, Graph, Catalogue, and Algorithm.

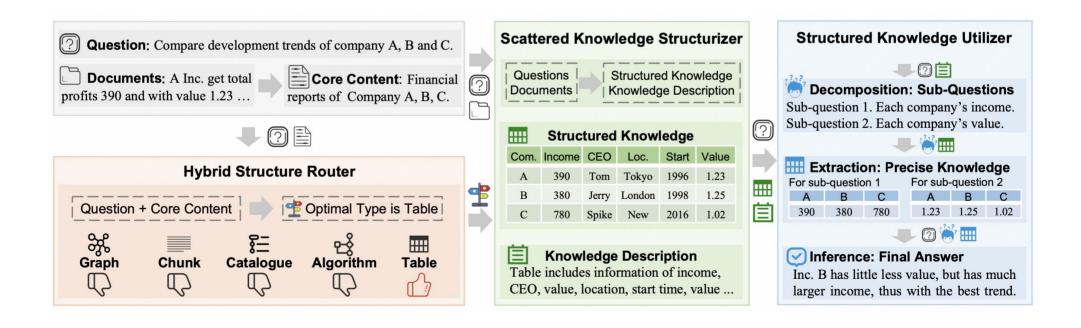
Motivation

> Can LLMs learn from human beings to solve knowledge-intensive reasoning tasks? Yes!

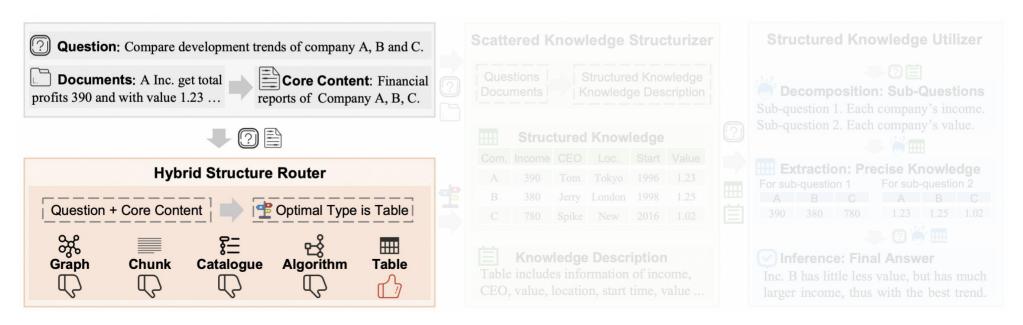
- Cognitive Similarity of LLMs and Human Beings
 - ➤ Chain of thought: *let's think step by step*.
 - ➤ OpenAI o1, DeepSeek R1: let LLMs do deep thinking as human beings.

- ➤ Powerful Structurization Capability of LLMs
 - > Text-to-Table: A New Way of Information Extraction.
 - ➤ UIE (Unified Structure Generation for Universal Information Extraction).

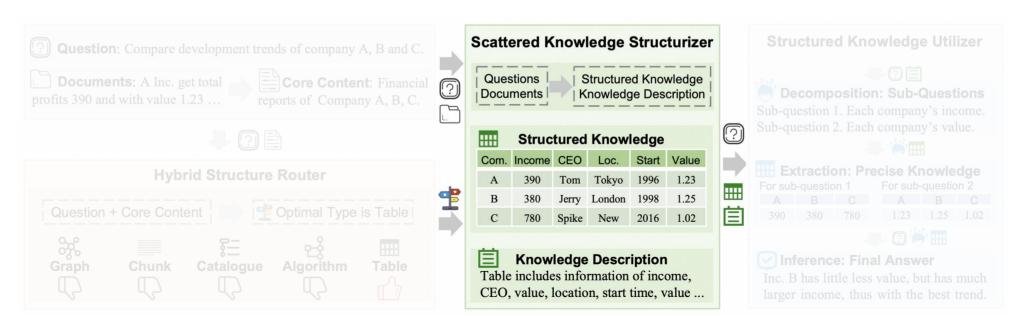
- ➤ Router → Structurizer → Utilizer
 - ➤ Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization



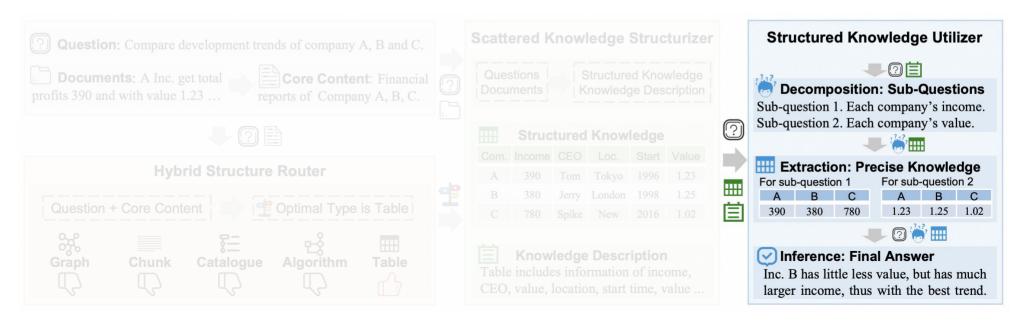
- **Router**: determine the optimal structure type based on the current task scenario.
 - ➤ Using LLM as the foundation, train a Router (which will be discussed in the next section).
 - > Input: the query and the core content description of documents.
 - > Output: the optimal structure types (currently including five possible structure types).



- > Structurizer: transform scattered information into structured knowledge.
 - > Leverage the capabilities of LLMs to achieve structured process based on manually designed prompts.
 - > **Input**: the query and raw documents.
 - > Output: selected type of structured knowledge and a brief description of the structured knowledge.



- ➤ **Utilizer**: use structured knowledge to reason out the answer.
 - **Decomposition**: decompose complex problem into subproblems based on structured knowledge descriptions.
 - **Extraction**: extract precise structured knowledge based on each subproblem.
 - ➤ **Inference**: Integrate all subproblems and precise knowledge to generate the final answer.



Router Training

➤ The router accuracy is the core factor of StructRAG performance.

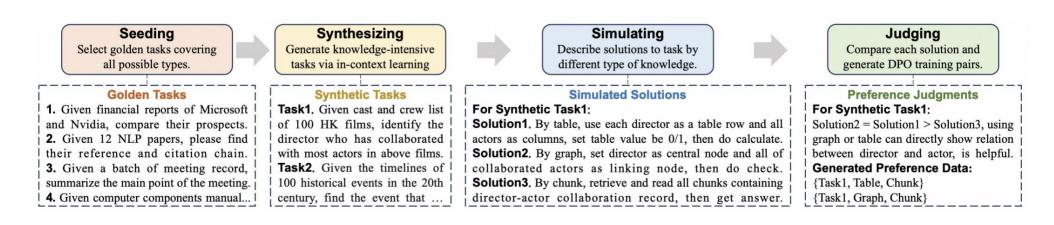
- ➤ Use DPO algorithm to train a high-performance router.
 - > Set the question and core content of documents as input, the name of structure as output.

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(q, C, t_w, t_l) \sim D_{\text{synthetic}}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(t_w \mid q, C)}{\pi_{\text{ref}}(t_w \mid q, C)} - \beta \log \frac{\pi_{\theta}(t_l \mid q, C)}{\pi_{\text{ref}}(t_l \mid q, C)} \right) \right]$$

➤ However, how to construct the training dataset ?

Router Training

- ➤ LLM-based Training Data Construction
 - > Task Synthesis: Generate more knowledge-intensive reasoning tasks based on the given seed tasks.
 - > Solution Simulation: Simulate the process of solving problems by different types of structured knowledge.
 - > Preference Judgment: Determine the superiority between different solutions and obtain training data for DPO.



- ➤ Base Model
 - > Qwen2-7B-Instruct (for Router), Qwen2-72B-Instruct (for Structurizer and Utilizer)
- > Dataset
 - ➤ Loong (Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA)
- **>** Baselines
 - **Long-context**: Directly input the entire document as external knowledge to the LLM.
 - > RAG: Split document into multiple chunks, retrieve a small number of relevant chunks as external knowledge.
 - > RQ-RAG: Based on RAG, iteratively perform query refinement based on the retrieval results.
 - ➤ **GraphRAG**: Construct the original document into a multi-level graph based on information extraction triples, and retrieve sub-graphs as external knowledge.

> StructRAG achieves the state-of-the-art performance overall.

Method	Spot.		Comp.		Clus.		Chain.		Overall	
Method	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM
Set 1 (10K-50K Tokens)										
Long-context (Yang et al., 2024a)	68.49	0.55	60.60	0.37	47.08	0.08	70.39	0.36	60.11	0.29
RAG (Lewis et al., 2020)	51.08	0.35	44.53	0.27	37.96	0.05	53.95	0.35	46.11	0.23
RQ-RAG (Chan et al., 2024)	72.31	0.54	48.16	0.05	47.44	0.07	58.96	0.25	53.51	0.17
GraphRAG (Edge et al., 2024)	31.67	0.00	27.60	0.00	40.71	0.14	54.29	0.43	40.82	0.18
StructRAG (Ours)	74.53	0.47	75.58	0.47	65.13	0.23	67.84	0.34	69.43	0.35
			Set 2 (50K-	100K T	okens)					
Long-context (Yang et al., 2024a)	64.53	0.43	42.60	0.21	38.52	0.05	51.18	0.20	45.71	0.17
RAG (Lewis et al., 2020)	66.27	0.46	46.28	0.31	38.95	0.05	46.15	0.22	45.42	0.19
RQ-RAG (Chan et al., 2024)	57.35	0.35	50.83	0.16	42.85	0.03	47.60	0.10	47.09	0.10
GraphRAG (Edge et al., 2024)	24.80	0.00	14.29	0.00	37.86	0.00	46.25	0.12	33.06	0.03
StructRAG (Ours)	68.00	0.41	63.71	0.36	61.40	0.17	54.70	0.19	60.95	0.24
			Set 3 (100K-	200K T	Tokens)					
Long-context (Yang et al., 2024a)	46.99	0.27	37.06	0.13	31.50	0.02	35.01	0.07	35.94	0.09
RAG (Lewis et al., 2020)	73.69	0.55	42.20	0.27	32.78	0.02	37.65	0.13	42.60	0.18
RQ-RAG (Chan et al., 2024)	50.50	0.13	44.62	0.00	36.98	0.00	36.79	0.07	40.93	0.05
GraphRAG (Edge et al., 2024)	15.83	0.00	27.40	0.00	42.50	0.00	43.33	0.17	33.28	0.04
StructRAG (Ours)	68.62	0.44	57.74	0.35	58.27	0.10	49.73	0.13	57.92	0.21
			Set 4 (200K-	250K T	Tokens)					
Long-context (Yang et al., 2024a)	33.18	0.16	26.59	0.08	29.84	0.01	25.81	0.04	28.92	0.06
RAG (Lewis et al., 2020)	52.17	0.24	24.60	0.10	26.78	0.00	17.79	0.00	29.29	0.07
RQ-RAG (Chan et al., 2024)	29.17	0.08	40.36	0.00	26.92	0.00	34.69	0.00	31.91	0.01
GraphRAG (Edge et al., 2024)	17.50	0.00	26.67	0.00	20.91	0.00	33.67	0.33	23.47	0.05
StructRAG (Ours)	56.87	0.19	55.62	0.25	56.59	0.00	35.71	0.05	51.42	0.10

> The advancements of StructRAG are even more apparent in more complex scenarios.

Method	Spot.		Comp.		Clus.		Chain.		Overall		
Wethou	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM	LLM Score	EM	
Set 1 (10K-50K Tokens)											
Long-context (Yang et al., 2024a)	68.49	0.55	60.60	0.37	47.08	0.08	70.39	0.36	60.11	0.29	
RAG (Lewis et al., 2020)	51.08	0.35	44.53	0.27	37.96	0.05	53.95	0.35	46.11	0.23	
RQ-RAG (Chan et al., 2024)	72.31	0.54	48.16	0.05	47.44	0.07	58.96	0.25	53.51	0.17	
GraphRAG (Edge et al., 2024)	31.67	0.00	27.60	0.00	40.71	0.14	54.29	0.43	40.82	0.18	
StructRAG (Ours)	74.53	0.47	75.58	0.47	65.13	0.23	67.84	0.34	69.43	0.35	
			Set 2 (50K-	100K T	okens)						
Long-context (Yang et al., 2024a)	64.53	0.43	42.60	0.21	38.52	0.05	51.18	0.20	45.71	0.17	
RAG (Lewis et al., 2020)	66.27	0.46	46.28	0.31	38.95	0.05	46.15	0.22	45.42	0.19	
RQ-RAG (Chan et al., 2024)	57.35	0.35	50.83	0.16	42.85	0.03	47.60	0.10	47.09	0.10	
GraphRAG (Edge et al., 2024)	24.80	0.00	14.29	0.00	37.86	0.00	46.25	0.12	33.06	0.03	
StructRAG (Ours)	68.00	0.41	63.71	0.36	61.40	0.17	54.70	0.19	60.95	0.24	
			Set 3 (100K-	200K T	okens)						
Long-context (Yang et al., 2024a)	46.99	0.27	37.06	0.13	31.50	0.02	35.01	0.07	35.94	0.09	
RAG (Lewis et al., 2020)	73.69	0.55	42.20	0.27	32.78	0.02	37.65	0.13	42.60	0.18	
RQ-RAG (Chan et al., 2024)	50.50	0.13	44.62	0.00	36.98	0.00	36.79	0.07	40.93	0.05	
GraphRAG (Edge et al., 2024)	15.83	0.00	27.40	0.00	42.50	0.00	43.33	0.17	33.28	0.04	
StructRAG (Ours)	68.62	0.44	57.74	0.35	58.27	0.10	49.73	0.13	57.92 4	0.21	
			Set 4 (200K-	250K T	okens)						
Long-context (Yang et al., 2024a)	33.18	0.16	26.59	0.08	29.84	0.01	25.81	0.04	28.92	0.06	
RAG (Lewis et al., 2020)	52.17	0.24	24.60	0.10	26.78	0.00	17.79	0.00	29.29	0.07	
RQ-RAG (Chan et al., 2024)	29.17	0.08	40.36	0.00	26.92	0.00	34.69	0.00	31.91	0.01	
GraphRAG (Edge et al., 2024)	17.50	0.00	26.67	0.00	20.91	0.00	33.67	0.33	23.47	0.05	
StructRAG (Ours)	56.87	0.19	55.62	0.25	56.59	0.00	35.71	0.05	51.42	0.10	

➤ All three modules contribute positively to the overall framework.

Method	Set 1		Set 2		Set 3		Set 4		Overall	
Withou	LLM Score	EM								
StructRAG	69.43	0.35	60.95	0.24	57.92	0.21	51.42	0.10	60.38	0.23
w/o router	51.09	0.28	48.28	0.17	39.52	0.13	41.83	0.10	45.33	0.17
w/o structurizer	64.97	0.29	52.17	0.17	53.18	0.19	44.24	0.10	53.92	0.19
w/o utilizer	68.23	0.29	59.73	0.24	53.29	0.19	35.77	0.10	55.94	0.22

> Using any single fixed type of knowledge cannot achieve good performance on diverse tasks.

Method	Set 1		Set 2		Set 3		Set 4		Overall	
Wiemou	LLM Score	EM								
StructRAG	69.43	0.35	60.95	0.24	57.92	0.21	51.42	0.10	60.38	0.23
w/ only table	48.00	0.23	55.19	0.24	50.35	0.19	38.44	0.12	49.66	0.21
w/ only graph	30.59	0.09	24.05	0.05	17.46	0.03	20.96	0.04	22.71	0.05
w/ only chunk	64.97	0.29	52.17	0.17	53.18	0.19	44.24	0.10	53.92	0.19
w/ only catalogue	30.49	0.10	36.36	0.13	36.77	0.12	23.75	0.03	33.26	0.10
w/ only algorithm	43.53	0.24	32.86	0.08	31.59	0.13	16.67	0.04	32.32	0.12

Limitations

- > Structure Setting
 - > Design a set of structural types to cover a wider range of tasks.

- > Structurization Process
 - ➤ Reduce the time consumed in constructing structured knowledge.
 - > Improve the LLM's ability to do structurization by post-training, such as reinforcement learning.

- ➤ Structured Knowledge Utilization
 - ➤ Simultaneously use multiple types of structured knowledge in one knowledge-intensive reasoning task.

End

Thanks for your listening!

lizhuoqun2021@iscas.ac.cn

https://github.com/Li-Z-Q/StructRAG

https://iclr.cc/virtual/2025/poster/30265

https://huggingface.co/papers/2410.08815