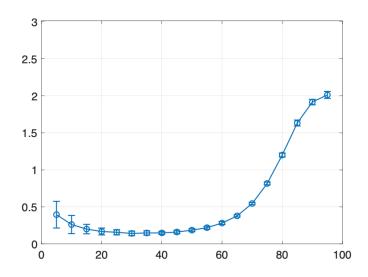
Singular Subspace Perturbation Bounds via Rectangular Random Matrix Diffusions



Peiyao Lai WPI

Oren Mangoubi WPI

ICLR 2025

Matrix Approximation

Matrix Approximation Problem:

Given
$$\gamma_1 \ge \cdots \ge \gamma_d$$
, $\Gamma \coloneqq \operatorname{diag}(\gamma_1, \cdots, \gamma_d)$,

Rectangular matrix $A \in \mathbb{R}^{m \times d}$ with singular values $\sigma_1 \geq \cdots \geq \sigma_d$ and diagonalization $M = \mathbf{U} \Sigma V^{\mathsf{T}}$.

$$\min_{\widehat{V} \in \mathrm{O}(d)} \ ||V\Gamma^2 V^\top - \widehat{V}\Gamma^2 \widehat{V}^\top||_F$$

Special cases:

- Singular Subspace Recovery: $\gamma_1=\cdots=\gamma_k=1$, $\gamma_{k+1}=\cdots=\gamma_d=0$
- Rank-k covariance approximation: $\gamma_i = \sigma_i$, $i \leq k$
 - Many applications to ML, statistics, medicine, engineering, etc.

Rectangular Matrix Perturbations

- Given: $\gamma_1 \geq \cdots \geq \gamma_d$, $\Gamma \coloneqq \operatorname{diag}(\gamma_1, \cdots, \gamma_d)$,
 - A (deterministic) rectangular $A \in R^{m \times d}$ with singular values $\sigma_1 \ge \cdots \ge \sigma_d$ and singular value decomposition $A = U\Sigma V^{\top}$.
 - ullet A random rectangular matrix $G \in \mathbb{R}^{m imes d}$ with iid N(0,1) entries

Let $\hat{A} = A + G$, and let $\hat{A} = \widehat{U} \widehat{\Sigma} \widehat{V}^{T}$ be its singular value decomposition

Goal: find an upper bound on
$$\|\widehat{V}\Gamma^2\widehat{V}^{\mathsf{T}} - V\Gamma^2V^{\mathsf{T}}\|_F \leq ?$$

Some Applications:

- Statistics under noise-corrupted data
- Differential privacy (releasing an entire privatized <u>dataset</u>)
- Randomized numerical linear algebra

Previous work: Singular Vector Perturbation

Previous works give perturbation bounds for worst-case (deterministic)

perturbations
$$E$$
: $\hat{A} = A + E$, $\hat{A} =: \hat{U} \hat{\Sigma} \hat{V}^{\mathsf{T}}$

$$|||V_k V_k^{\mathsf{T}} - \hat{V}_k \hat{V}_k^{\mathsf{T}}||| \leq \frac{|||E|||}{\sigma_k - \sigma_{k+1}} \qquad \text{[Wedin, `72]}$$

For Gaussian E, implies $\|V_k V_k^{\mathsf{T}} - \hat{V}_k \hat{V}_k^{\mathsf{T}}\|_F \le O\left(\frac{\sqrt{m}\sqrt{k}}{\sigma_k - \sigma_{k+1}}\right)$ w.h.p.

- More recent works give improved bounds when perturbation is, e.g., a Gaussian random matrix: (r := rank(A))
- is, e.g., a Gaussian random matrix: $(r := \operatorname{rank}(A))$

$$\max\left(\|\hat{U}_k\hat{U}_k^\top - U_kU_k^\top\|_F, \|\hat{V}_k\hat{V}_k^\top - V_kV_k^\top\|_F\right) \le O\left(r\sqrt{k}\sqrt{\sum_{j=1}^k \frac{1}{(\sigma_j - \sigma_{k+1})^2}} + \frac{\sqrt{m}\sqrt{k}}{\sigma_k}\right) \text{w.h.p.} \frac{\text{[O'Rourke,Vu, Wang, '23]}}{\text{Wang, '23]}}$$
• Many works also give bounds specialized to symmetric/Hermitian case: [Davis, Kahan '70] (deterministic perturb.), e.g. [Dwork, Talwar, Thakurta, Zhang '14], [Mangoubi, Vishnoi '22, '23, '25]

- (Gaussian perturbations), & more general random perturbations e.g. [O'Rourke, Vu, Wang,'18] Bounds of [O'Rourke, Vu, Wang,23] are tight for <u>left</u> singular subspace $U_k \subseteq \mathbb{R}^{m \times k}$, $m \ge d$
- Current bounds on <u>right</u> singular subspace $V_k \subseteq \mathbb{R}^{d \times k}$ are not tight for all σ when perturbation is Gaussian, and **depend on** m.

 In many applications, m = # of datapoints, d = number of features, with $m \gg d$.
- Can one obtain right singular subspace bounds independent of m, even when $m\gg d$?

Main result [L-M '25]: Rectangular Gaussian perturbations

Assumption(A): The top-k singular values of A satisfy $\sigma_i - \sigma_{i+1} \geq \widetilde{\Omega}(\sqrt{dT}) \ \forall \ i \leq k$

Theorem: Given T > 0, $k \le d$, $\gamma_1 \ge \cdots \ge \gamma_d$ with $\gamma_i = 0$ for i > k,

 $A \in \mathbb{R}^{m \times d}$ with singular values $\sigma_1 \geq \cdots \geq \sigma_d$. Let $\hat{A} = A + \sqrt{T}G$ and G, V, \hat{V}

as above. Then
$$\mathbb{E}[\|\hat{V}\Gamma^2\hat{V}^\top - V\Gamma^2V^\top\|_F^2] \leq \tilde{O}\left(\sum_{i=1}^k \sum_{j=i+1}^d \frac{\left(\gamma_i^2 - \gamma_j^2\right)}{\left(\sigma_i - \sigma_i\right)^2}\right) T.$$

Corollary (right singular subspace recovery of Gaussian-perturbed rectangular matrix):

$$\mathbf{E}\left[||\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} - \widehat{\mathbf{V}}_{k}\widehat{\mathbf{V}}_{k}^{\mathsf{T}}||_{F}\right] \leq \tilde{O}\left(\frac{\sqrt{d}\sqrt{k}}{\sigma_{k} - \sigma_{k+1}}\right)$$

$$\mathbf{E}\left[||\mathbf{V}_k\mathbf{V}_k^{\top} - \hat{V}_k \hat{V}_k^{\top}||_F\right] \leq \tilde{O}\left(\frac{\sqrt{d}}{\sigma_k - \sigma_{k+1}}\right) \qquad \text{(if we also have } \sigma_i - \sigma_{i+1} \geq \sigma_k - \sigma_{k+1} \forall \ i \leq k\text{)}$$

- Improves by $\sqrt{k} \frac{\sqrt{m}}{\sqrt{d}}$ (in expectation) on bound $||V_k V_k^T \hat{V}_k \hat{V}_k^T||_F \le O\left(\frac{\sqrt{m}\sqrt{k}}{\sigma_k \sigma_{k+1}}\right)$ w.h.p. implied by [Davis, Kahan '70], [Wedin, '72], eliminating dependence on m
- •Similar improvement on right sing. sub. bound of [O'Rourke, Vu, Wang, 23] if e.g. $\sigma_k \sigma_{k+1} = \Omega(\sigma_k)$

Corollary (covariance approximation of Gaussian-perturbed rectangular matrix):
$$\mathbb{E}\left[\|\hat{V}\hat{\Sigma}_k^{\top}\hat{\Sigma}_k\hat{V}^{\top} - V\Sigma_k^{\top}\Sigma_kV^{\top}\|_F\right] \leq O\left(\sqrt{k}\sqrt{d}\left(\sigma_1 + \sigma_k\frac{\sigma_k}{\sigma_k - \sigma_{k+1}}\right)\right)$$

• Improves by $\sqrt{k} \frac{\sqrt{m}}{\sqrt{d}}$ (in expectation) on bound implied by [O'Rourke, Vu, Wang '18] for

Gaussian perturbations if e.g. $\sigma_k - \sigma_{k+1} = \Omega(\sigma_k)$, eliminating dependence on m

Singular Vector Flow: The Dyson Bessel Process

View addition of Gaussian noise as rectangular matrix-valued diffusion

$$\hat{A}(t) = A + W(t), \qquad t > 0$$

• Each entry of W(t) is a standard Brownian Motion (BM)

Take SVD of $\hat{A}(t) = U(t)\Sigma(t)V^{T}(t)$

$$U(t) = \begin{pmatrix} u_1(t), & \cdots, & u_d(t) \end{pmatrix} \quad \Sigma(t) = \begin{pmatrix} \sigma_1(t) & & \\ & \ddots & \\ & & \sigma_d(t) \end{pmatrix} V(t) = \begin{pmatrix} v_1(t), & \cdots, & v_d(t) \end{pmatrix}$$

Eigenvalues and eigenvectors evolve according to Dyson Bessel Process SDFs (see e.g. [Bru '80]).

$$d\sigma_{i}(t) = d\beta_{ii}(t) + \left(\frac{1}{2\sigma_{i}(t)} \sum_{j \neq i} \frac{(\sigma_{i}(t))^{2} + (\sigma_{j}(t))^{2}}{(\sigma_{i}(t))^{2} - (\sigma_{j}(t))^{2}} + \frac{m-1}{2\sigma_{i}(t)}\right) dt, 1 \leq i \leq d,$$

$$dv_{i}(t) = \sum_{j \neq i} v_{j}(t) \sqrt{\frac{(\sigma_{j}(t))^{2} + (\sigma_{i}(t))^{2}}{((\sigma_{j}(t))^{2} - (\sigma_{i}(t))^{2})^{2}}} d\beta_{ji}(t) - \frac{1}{2}v_{i}(t) \sum_{j \neq i} \frac{(\sigma_{j}(t))^{2} + (\sigma_{i}(t))^{2}}{((\sigma_{j}(t))^{2} - (\sigma_{i}(t))^{2})^{2}} dt$$

$$=: \sum_{j \neq i} v_{j}(t)c_{ij}(t)d\beta_{ji}(t) - \frac{1}{2}v_{i}(t) \sum_{j \neq i} c_{ij}^{2}(t)dt,$$

Here $\beta_{ij}(t)$, $1 \le i < j \le d$ is a family of iid standard Brownian motions

(analogous SDEs for $du_i(t)$)

- Using SDEs to bound the error:
 Define projected process: $\Psi(t) = V(t)\Gamma^2V^{\mathsf{T}}(t)$
- We want to bound $||\Psi(T) \Psi(0)||_F^2 = ||\int_0^T d\Psi(t)||_F^2$

Use singular vector evolution equations to derive SDE for $\Psi(t)$:

$$d\Psi(t) = \sum_{i=1}^{d} \sum_{j \neq i} (\gamma_i^2 - \gamma_j^2) \left[\frac{1}{2} \sqrt{\frac{\sigma_j^2(t) + \sigma_i^2(t)}{(\sigma_j^2(t) - \sigma_i^2(t))^2}} d\beta_{ji}(t) (v_i(t)v_j^\top(t) + v_j(t)v_i^\top(t)) \right] d\omega_{ij}(t)$$

$$- \frac{\sigma_j^2(t) + \sigma_i^2(t)}{(\sigma_i^2(t) - \sigma_i^2(t))^2} dt (v_i(t)v_i^\top(t)) \right]$$

- $d\Psi(t)$ is a sum of independent random terms $d\omega_{ij}(t)$:
 - $d\omega_{ii}(t)$ independent for all i, j, and independent of past times t

Next, use independence to "add up" Frobenius norms of $\mathrm{d}\omega_{ii}(t)$ as sum-ofsquares. Then use Ito's Lemma to integrate Frobenius norm over_time:

$$\mathbb{E}\left[\|\Psi(T) - \Psi(0)\|_F^2\right] \le \int_0^T \mathbb{E}\left[\sum_{i=1}^d \sum_{j \ne i} (\gamma_i^2 - \gamma_j^2)^2 \frac{\sigma_j^2(t) + \sigma_i^2(t)}{(\sigma_j^2(t) - \sigma_i^2(t))^2}\right] dt + \cdots$$

Finally, use Weyl's inequality to bound singular value gaps:

$$\sigma_i(t) - \sigma_j(t) \ge \sigma_i - \sigma_j - \|W(t)\|_2 \ge \frac{1}{2} (\sigma_i - \sigma_j)$$
 w.h.p.,

as long as $\sigma_i - \sigma_{i+1} \ge \sqrt{d} \quad \forall i \le k$.

Conclusion

Introduced diffusion-based techniques for bounding singular vectors of rectangular matrices perturbed by Gaussian noise

Singular vector perturbation bound: $\mathbf{E}\left[||V_k V_k^{\mathsf{T}} - \hat{V}_k \hat{V}_k^{\mathsf{T}}||_F\right] \leq \tilde{O}(\frac{\sqrt{d}}{\sigma_k - \sigma_{k+1}})$

Improves by $\sqrt{k} \frac{\sqrt{m}}{\sqrt{d}}$ when noise is Gaussian, $\sigma_i - \sigma_{i+1} \ge \sigma_k - \sigma_{k+1}$, $i \le k$

Replaces dependence on m with dependence on d!

Covariance approximation bound:

$$\mathbb{E}\left[\|\hat{V}\hat{\Sigma}_{k}^{\top}\hat{\Sigma}_{k}\hat{V}^{\top} - V\Sigma_{k}^{\top}\Sigma_{k}V^{\top}\|_{F}\right] \leq O\left(\sqrt{k}\sqrt{d}\left(\sigma_{1} + \sigma_{k}\frac{\sigma_{k}}{\sigma_{k} - \sigma_{k+1}}\right)\right)$$

Improves by $\sqrt{k} \frac{\sqrt{m}}{\sqrt{d}}$ when noise is Gaussian, $\sigma_i - \sigma_{i+1} \ge \sigma_k - \sigma_{k+1}$, $i \le k$

Replaces dependence on m with dependence on d!

Can one obtain stronger bounds for inputs A with additional structure?

Can one extend diffusion techniques to non-Gaussian noise?

Thanks!