

Wavelet Diffusion Neural Operator

Peiyan Hu^{2#*}, Rui Wang^{3#*}, Xiang Zheng^{4#}, Tao Zhang¹, Haodong Feng¹, Ruiqi Feng¹, Long Wei¹,

Yue Wang⁵, Zhi-Ming Ma², Tailin Wu^{1†}

- ¹ Department of Artificial Intelligence, School of Engineering, Westlake University,
- ² Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
- ³ Fudan University, ⁴ South China University of Technology, ⁵ Microsoft AI4Science
 - (* equal contributions; # intern at Westlake University, † corresponding author)

Corresponding to: {hupeiyan,wutailin}@westlake.edu.cn, ruiwang18@fudan.edu.cn

- Motivation: abrupt changes & multi-resolution
- Generation in the wavelet domain.
 - Wavelet transform is both space and frequency localized and excels at approximating functions with abrupt changes.
 - Due to the linearity and locality of the wavelet transform, it can integrate seamlessly with the multi-resolution training.
- Multi-resolution training.
 - Generalization to higher–resolution simulations.

Diffusion model:

Forward process: add noise

$$q(x_{k+1}|x_k) = \mathcal{N}(x_{k+1}; \sqrt{\alpha_k} x_k, (1 - \alpha_k) \mathbf{I})$$

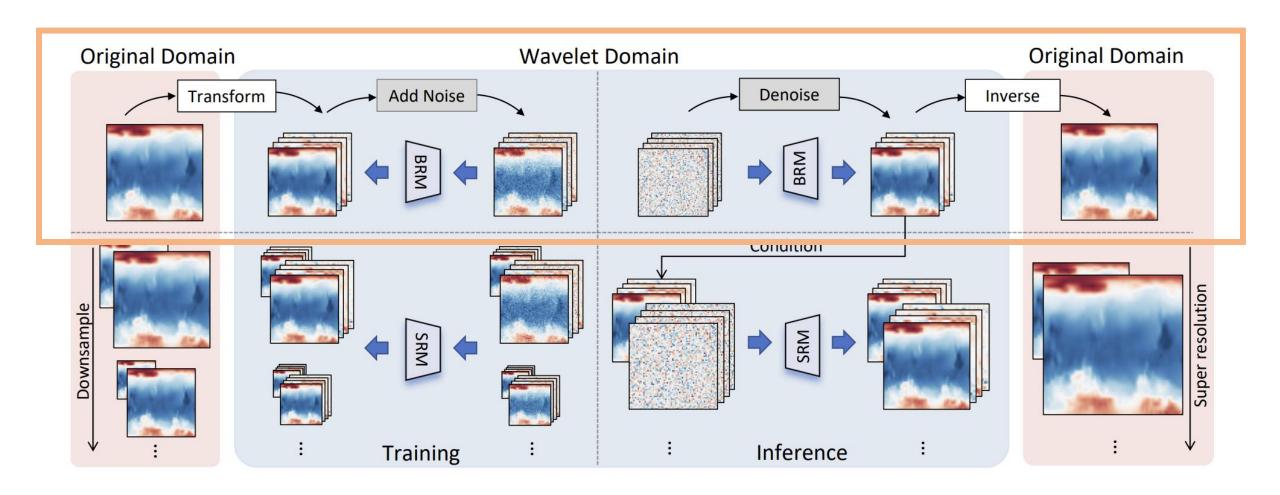
Reverse process: denoise

$$p_{\theta}(x_{k-1}|x_k) = \mathcal{N}(x_{k-1}; \mu_{\theta}(x_k, \mathbf{k}), \sigma_k \mathbf{I})$$

• Train the denoising model ϵ_{θ} :

$$\mathcal{L} = \mathbb{E}_{k \sim U(1,K), \mathbf{x}_0 \sim p(x), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_k} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_k} \boldsymbol{\epsilon}, k) \|_2^2]$$

Method



Method - Generation in the Wavelet Domain

• Wavelet basis: we use wavelet analysis to represent signals with basis functions localized in both space-time and frequency domains, taking values only within finite intervals.

$$u(x) = \sum_{m} c_L(m)\phi_{L,m}(x) + \sum_{m} d_L(m)\psi_{L,m}(x).$$

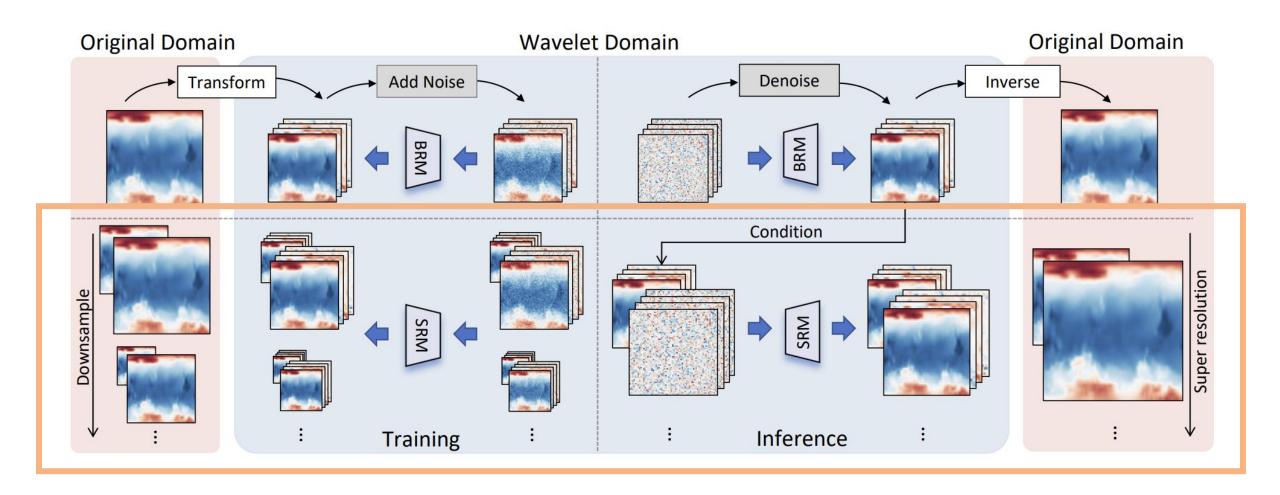
WDNO for simulation:

$$W_{u_{[0,T]}}^{(k-1)} = W_{u_{[0,T]}}^{(k)} - \eta \epsilon_{\theta}(W_{u_{[0,T]}}^{(k)}, W_a, k) + \xi, \quad \xi \sim \mathcal{N}(\mathbf{0}, \sigma_k^2 \mathbf{I})$$

WDNO for control:

$$W_{f_{[0,T]}}^{(k-1)} = W_{f_{[0,T]}}^{(k)} - \eta \left(\epsilon_{\theta}(W_{f_{[0,T]}}^{(k)}, W_a, k) + \lambda \nabla_{W_{f_{[0,T]}}} \mathcal{J}(\hat{W}_{f_{[0,T]}}^{(k)}) \right) + \xi, \quad \xi \sim \mathcal{N}(\mathbf{0}, \sigma_k^2 \mathbf{I})$$

Method - Multi-resolution Training



Results

Our method tested in 5 different simulation tasks and 2 control tasks:

Simulation:

- 1D Burgers' equation state control
- 1D Advection equation
- 1D compressible Navier–Stokes equation
- 2D incompressible fluid
- ERA5 dataset for weather forecasting

Control:

- 1D Burgers' equation state control
- 2D incompressible fluid control

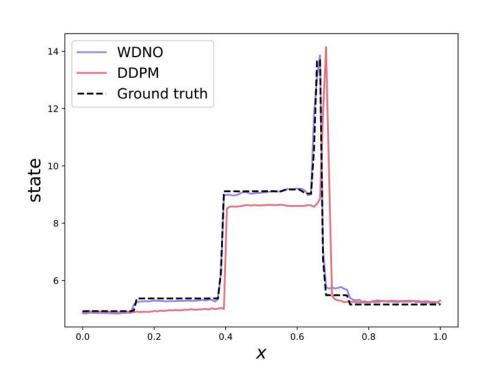
- WDNO demonstrates superior simulation and control performance
 - Significant improvements in long-term and detail prediction accuracy.
 - WDNO reduces the smoke leakage by 33.2% compared to the second-best baseline in indirect control task.

Simulation Results

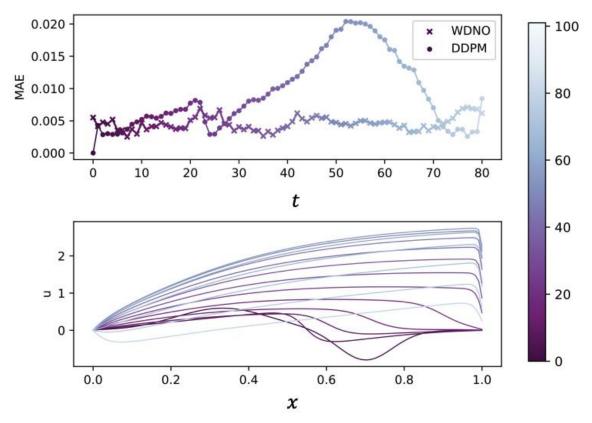
	1D			2D	
Methods	Burgers'	Advection	Navier-Stokes	Fluid	ERA5
WNO	0.00572	4.216e-02	6.5428	0.07975	2000 25
MWT	0.00052	3.468e-04	1.3830	0.01556	21.85750
OFormer	0.00023	1.858e-04	0.6227	0.04303	18.26230
FNO	0.00015	9.712e-04	0.2575	0.00684	14.38638
CNN (1D) / U-Net (2D)	0.00198	5.033e-04	12.4966	0.00737	15.51342
DDPM	0.00013	4.209e-05	5.5228	0.01578	15.21103
WDNO (ours)	0.00014	2.898e-05	0.2195	0.00231	12.83291

WDNO achieves the best Performance

Simulation Results - abrupt changes



1D Burgers' equation



1D Compressible Navier-Stokes

Control Results - 1D Burgers' equation

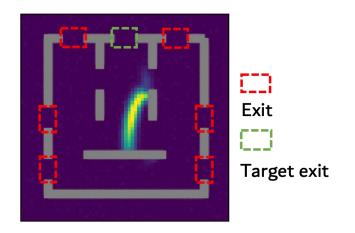
Control objective: $(u^*(x))$ is target state

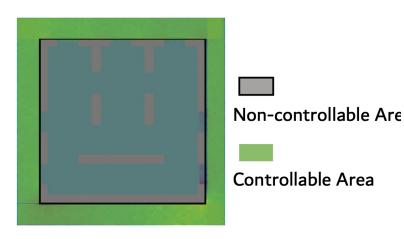
$$J = \int_{D} |u(T, x) - u_{d}(x)|^{2} dx + a \int_{[0, T] \times D} |f(t, x)|^{2} dt dx$$

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = -u(t,x) \cdot \frac{\partial u(t,x)}{\partial x} + v \frac{\partial^2 u(t,x)}{\partial x^2} + f(t,x) & \text{in } [0,T] \times D \\ u(t,x) = 0 & \text{on } [0,T] \times \partial D \\ u(0,x) = u_0(x) & \text{at } \{t=0\} \end{cases}$$

Methods	$\mid \mathcal{J} \mid$
PID (surrogate-solver)	0.6645
SAC (pseudo-online)	0.1376
SAC (offline)	0.3210
BC (surrogate-solver)	0.2998
BC (solver)	0.1879
BPPO (surrogate-solver)	0.3075
BPPO (solver)	0.1867
SL	0.0235
DDPM	0.0272
WDNO (ours)	0.0205

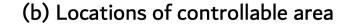
Control Results — 2D incompressible fluid

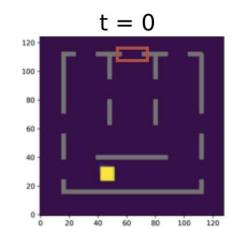


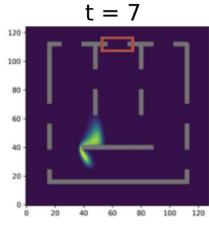


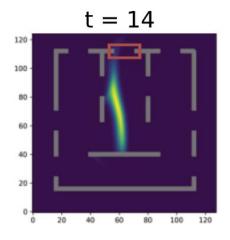
Methods	$ \mathcal{J} $
BC	0.3085
BPPO	0.3066
SAC (pseudo-online)	0.3212
SAC (offline)	0.6503
DDPM	0.3124
WDNO (ours)	0.2047

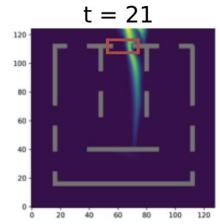
(a) Locations of exits and obstacles

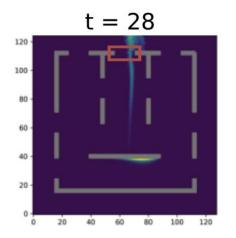




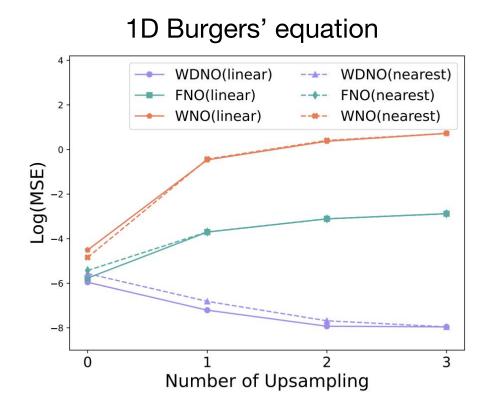




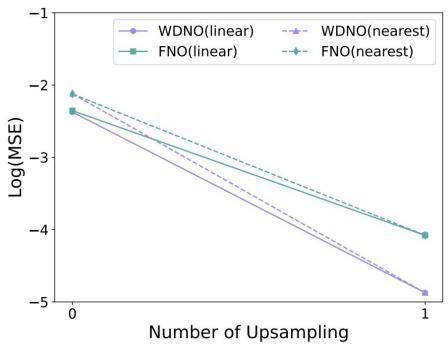




Results - zero-shot super-resolution

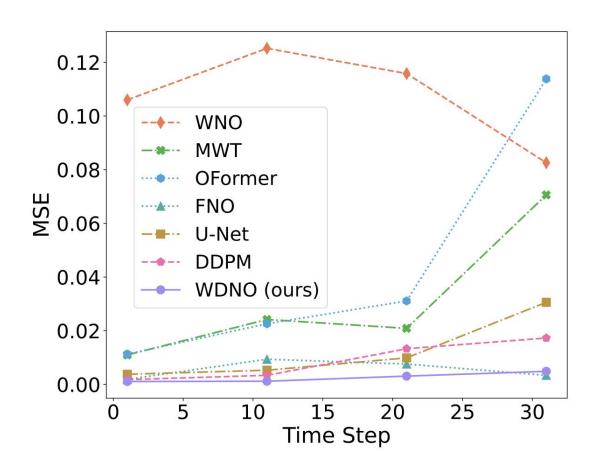


2D incompressible fluid



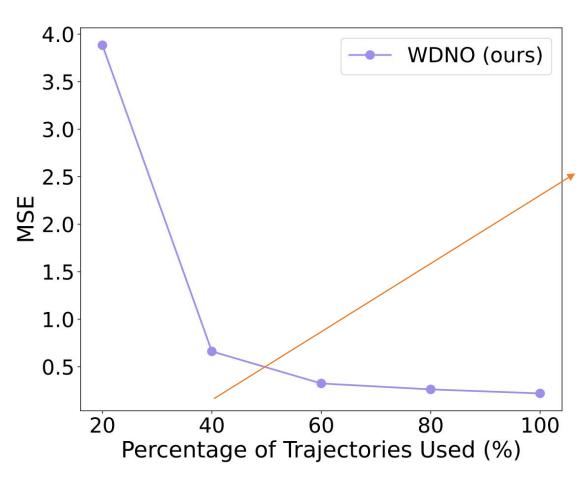
WDNO outperforms the mesh-invariant FNO and WNO

Results – Ablation studies



Long-term dependencies.

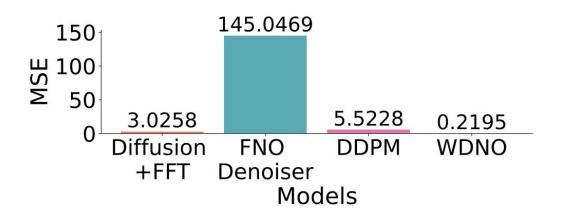
WDNO exhibits the slowest error growth.



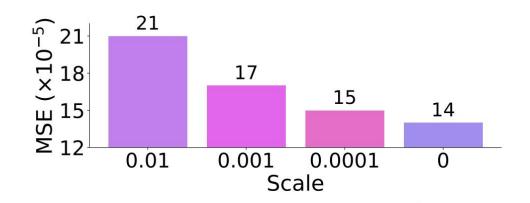
Number of training samples.

0.4 times: WDNO 's error remains within a relatively small range.

1D compressible Navier-Stokes equation



Comparison with Fourier transform: Wavelet transforms is more effective for learning complex system dynamics.



Measurement noise:

WDNO 's results exhibit minimal variation with changes in scale, demonstrating its robustness to noise.

Limitation and Future Work

- Real–World Application
 - WDNO is not limited to specific environments.
 - Potential real-world applications: turbulence, structural materials, plasma.
- Applicability to Irregular Data
 - WDNO (Wavelet transform& denoising model U–Net): only applicable to static, uniform grid data.
 - Future improvements:
 - Geometric wavelets for irregular data;
 - Diffusion models for graph structures;
 - Projecting irregular grids onto regular uniform grids
- Incorporating Physical Information
 - Current: not incorporate equation—based information
 - Add physics-informed loss based on the PDEs --> enhance the model's accuracy, robustness, and generalizability.

Our group: Al for Scientific Simulation & Discovery Lab @ Westlake **University**

Peiyan Hu

Rui Wang

Xiang Zheng

Tao Zhang

Group

Haodong Feng

Ruiqi Feng

Long Wei

Yue Wang

Zhi-Ming Ma

Tailin Wu

Thank you!

If you have any questions, please feel free to contact us at:

hupeiyan18@mails.ucas.ac.cn ruiwang18@fudan.edu.cn wutailin@westlake.edu.cn

Group Website:

