

Proxy Denoising for Source-Free Domain Adaptation

Song Tang^{1.2,} Wenxin Su¹, Yan Gan¹, Mao Ye^{*4}, Jianwei Zhang^{*5} and Xiatian Zhu^{*5}

¹University of Shanghai for Science and Technology ²Universität Hamburg ³Chongqing University ⁴University of Electronic Science and Technology of China ⁵University of Surrey

* Indicates corresponding author

Outlines

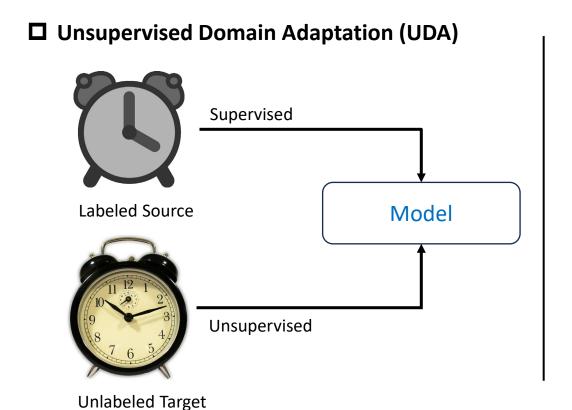
Source-Free Domain Adaptation

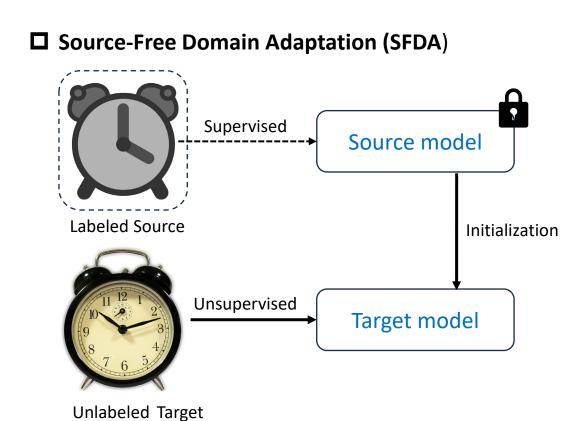
2 Challenges & Motivation

Proxy Denoising Theory

Capitalizing on Corrected Proxy

Experiment & Conclusion





Source-Free Domain Adaptation

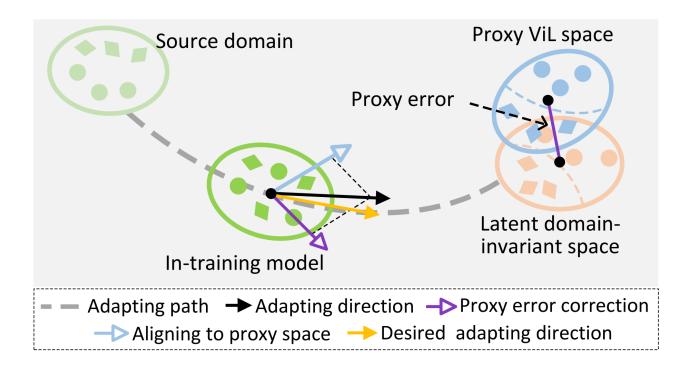
- > Condition: Source model & Unlabeled target data
- Goal: Transfer a pretrained source model to the target domain using only unlabeled target data

Challenges

- ☐ Conventional methods rely on error-prone pseudo-labeling or auxiliary supervision
 - > Constructing a pseudo source domain to leverage established UDA methods
 - Mining extra supervision from the source model

The success of Visual-language (ViL) pre-trained model led light on SFDA

□ ViL's supervision could be noisy and inaccurate at an unknown rate, introducing additional negative effects during adaption.



Motivation

Considering the ViL model/space as a noisy proxy of the latent domain-invariant space, with a need to be denoised.

☐ Key point

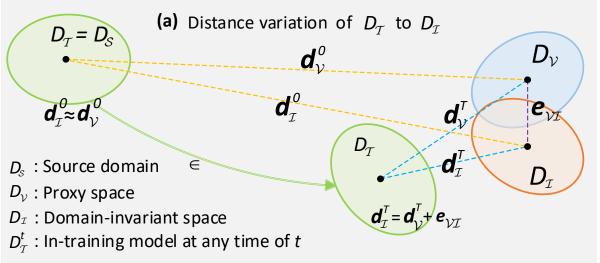
Exploit the dynamics of domain adaptation process, starting at the source model space and terminating presumably in the latent domain invariant space.

Proxy Denoising Theory

Modeling the effect dynamics of proxy error, i.e., proxy's divergence against the domain-invariant space, in the adaptation process.

lacktriangle Distance variation of intermediate space $\mathcal{D}_{\!\mathcal{I}}^t$ (presented by in-training model) to domain-invariant space $\mathcal{D}_{\!\mathcal{I}}$

Case-1: When D_T^t is way far from D_V , the beginning of adaptation (t=0)

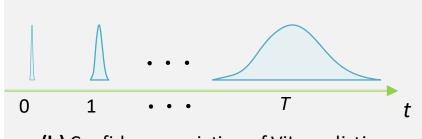

$$m{d}_{\mathcal{I}}^0pprox m{d}_{\mathcal{V}}^0\gg m{e}_{\mathcal{V}\mathcal{I}}$$

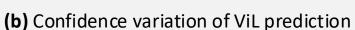
Case-2: When D_T^t approaches D_V , the later phase in the adaptation (t=U >> 0)

$$oldsymbol{d}_{\mathcal{I}}^U = oldsymbol{d}_{\mathcal{V}}^U + oldsymbol{e}_{\mathcal{V}\mathcal{I}}$$

$$\eta_t = \frac{|\boldsymbol{d}_{\mathcal{I}}^t|}{|\boldsymbol{d}_{\mathcal{V}}^t|} = \frac{|\boldsymbol{d}_{\mathcal{V}}^t + \boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|} \leq \frac{|\boldsymbol{d}_{\mathcal{V}}^t| + |\boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|} = 1 + \frac{|\boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|}$$

The effect of proxy error is gradually increasing




Proxy Denoising Theory


The effect of proxy error is gradually increasing

In probabilistic view

Treat the ViL predictions that approximate a Gaussian distribution $\mathcal{N}\left(\theta_{v}\left(x_{i}\right),\delta_{t}\right)$:

- \blacktriangleright Mean $\theta_v\left(x_i\right)$ is the ViL prediction
- \triangleright Variance $\delta_t \propto \eta_t$

Our solution

$$\mathcal{N}\left(\theta_{v}\left(x_{i}\right),\delta_{t}\right)\Longrightarrow P\left(G_{P(\mathcal{V})}=True,t\right)P\left(\mathcal{V}\right)$$

- $\triangleright P(\mathcal{V})$ is the probability distribution of the proxy space $D_{\mathcal{V}}$
- $ightharpoonup G_{P(\mathcal{V})}$ is a random event that the sampling result (i.e., a ViL prediction) from $P(\mathcal{V})$ is confident.
- $ightharpoonup P\left(G_{P(\mathcal{V})}=True,t\right)$ is proxy confidence, indicating the probability of the event $G_{P(\mathcal{V})}$ being true at a time t.

Given that the proxy error is unknown, we cannot formulate these dynamics explicitly

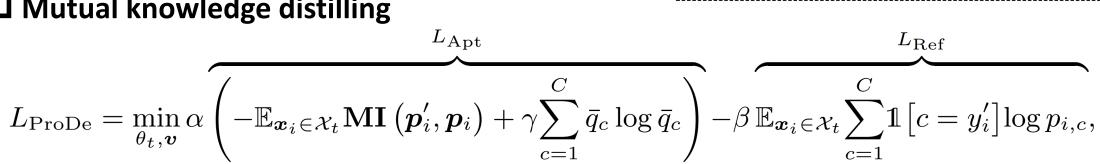
Proxy Denoising Theory

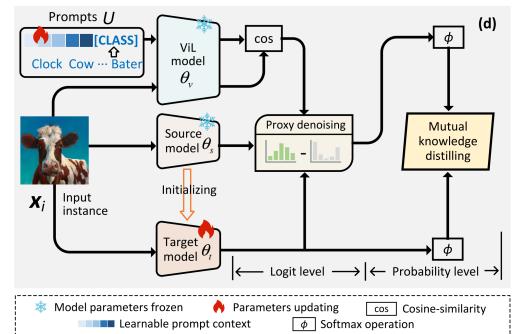
Theorem 1 We note that the source domain (D_S) , the domain-invariant space (D_I) , the proxy space (D_V) and the in-training model (D_T^t) follow the probability distributions P(S), P(I), P(V) and $P(T^t)$, respectively, where S, I, V and T^t are corresponding random variables. With our proxy alignment idea (see $S \in C$. 3.1), the proxy confidence can be expressed as:

$$P\left(G_{P(\mathcal{V})} = True, t\right) \propto \frac{P(\mathcal{T}^t)}{P(\mathcal{S})}$$

The effect of ViL prediction errors on domain adaptation can be approximately estimated by contrasting the distributions of the source model and the current in-training model

Capitalizing on Corrected Proxy


Design of proxy denoising mechanism


$$\mathcal{N}\left(\theta_{v}\left(x_{i}\right),\delta_{t}\right)\Longrightarrow P\left(G_{P(\mathcal{V})}=True,t\right)P\left(\mathcal{V}\right)$$
 + Theorem 1

$$\log\left(\frac{P(\mathcal{T}^t)}{P(\mathcal{S})}P(\mathcal{V})\right) = \log P(\mathcal{V}) - \left[\log P(\mathcal{S}) - \log P(\mathcal{T}^t)\right]$$

$$\boldsymbol{p}_{i}' = \operatorname{softmax} \left(\theta_{v} \left(\boldsymbol{x}_{i}, \boldsymbol{v} \right) - \omega \left[\theta_{s} \left(\boldsymbol{x}_{i} \right) - \theta_{t} \left(\boldsymbol{x}_{i} \right) \right] \right)$$

■ Mutual knowledge distilling

Experiment

■ Vanilla Closed-set SFDA

Table 1: Closed-set SFDA results (%) on **Office-31**. **SF** means source-free.

Method	Venue	SF	$A \rightarrow D$	$A \rightarrow W$	$D \rightarrow A$	$D \rightarrow W$	$W \rightarrow A$	$W \rightarrow \Gamma$	Avg.
Source	_	–	79.1	76.6	59.9	95.5	61.4	98.8	78.6
SHOT	ICML20	1	93.7	91.1	74.2	98.2	74.6	100.	88.6
NRC	NIPS21	1	96.0	90.8	75.3	99.0	75.0	100.	89.4
GKD	IROS21	1	94.6	91.6	75.1	98.7	75.1	100.	89.2
HCL	NIPS21	1	94.7	92.5	75.9	98.2	77.7	100.	89.8
AaD	NIPS22	1	96.4	92.1	75.0	99.1	76.5	100.	89.9
AdaCon	CVPR22	1	87.7	83.1	73.7	91.3	77.6	72.8	81.0
CoWA	ICML22	1	94.4	95.2	76.2	98.5	77.6	99.8	90.3
ELR	ICLR23	1	93.8	93.3	76.2	98.0	76.9	100.	89.6
PLUE	CVPR23	1	89.2	88.4	72.8	97.1	69.6	97.9	85.8
CPD	PR24	1	96.6	94.2	77.3	98.2	78.3	100.	90.8
TPDS	IJCV24	✓	97.1	94.5	75.7	98.7	75.5	99.8	90.2
DIFO-R	CVPR24	1	93.6	92.1	78.5	95.7	78.8	97.0	89.3
DIFO-V	CVPR24	1	97.2	95.5	83.0	97.2	83.2	98.8	92.5
ProDe-F	l –	1	94.4	92.1	79.8	95.6	79.0	98.6	89.9
ProDe-V	7_	1	96.8	96.4	83.1	97.0	82.5	99.8	92.6

Table 2: Closed-set SFDA results (%) on **Office-Home** and **VisDA**. **SF** means source-free. The full results on **VisDA** are provided in Appendix E.1.

Method	Venue	SF	Ar→Cl	Ar→Pr	Ar→Rw	·Cl→Ar	·Cl→Pr		fi ce-Hor Pr→Ar		Pr→Rw	Rw→Ar	Rw→Cl	Rw→P	r Avg.	VisDA Sy→Re
Source	_	-	43.7	67.0	73.9	49.9	60.1	62.5	51.7	40.9	72.6	64.2	46.3	78.1	59.2	49.2
SHOT	ICML20	1/	56.7	77.9	80.6	68.0	78.0	79.4	67.9	54.5	82.3	74.2	58.6	84.5	71.9	82.7
NRC	NIPS21	1	57.7	80.3	82.0	68.1	79.8	78.6	65.3	56.4	83.0	71.0	58.6	85.6	72.2	85.9
GKD	IROS21	 	56.5	78.2	81.8	68.7	78.9	79.1	67.6	54.8	82.6	74.4	58.5	84.8	72.2	83.0
AaD	NIPS22	1	59.3	79.3	82.1	68.9	79.8	79.5	67.2	57.4	83.1	72.1	58.5	85.4	72.7	88.0
AdaCon	CVPR22	 	47.2	75.1	75.5	60.7	73.3	73.2	60.2	45.2	76.6	65.6	48.3	79.1	65.0	86.8
CoWA	ICML22	1	56.9	78.4	81.0	69.1	80.0	79.9	67.7	57.2	82.4	72.8	60.5	84.5	72.5	86.9
ELR	ICLR23	1	58.4	78.7	81.5	69.2	79.5	79.3	66.3	58.0	82.6	73.4	59.8	85.1	72.6	85.8
PLUE	CVPR23	 	49.1	73.5	78.2	62.9	73.5	74.5	62.2	48.3	78.6	68.6	51.8	81.5	66.9	88.3
CPD	PR24	1	59.1	79.0	82.4	68.5	79.7	79.5	67.9	57.9	82.8	73.8	61.2	84.6	73.0	85.8
TPDS	IJCV24	1	59.3	80.3	82.1	70.6	79.4	80.9	69.8	56.8	82.1	74.5	61.2	85.3	73.5	87.6
DAPL-R	TNNLS23	x	54.1	84.3	84.8	74.4	83.7	85.0	74.5	54.6	84.8	75.2	54.7	83.8	74.5	86.9
PADCLIP-	RICCV23	x	57.5	84.0	83.8	77.8	85.5	84.7	76.3	59.2	85.4	78.1	60.2	86.7	76.6	88.5
ADCLIP-R	ICCVW23	X	55.4	85.2	85.6	76.1	85.8	86.2	76.7	56.1	85.4	76.8	56.1	85.5	75.9	87.7
PDA-R	AAAI24	x	55.4	85.1	85.8	75.2	85.2	85.2	74.2	55.2	85.8	74.7	55.8	86.3	75.3	86.4
DAMP-R	CVPR24	x	59.7	88.5	86.8	76.6	88.9	87.0	76.3	59.6	87.1	77.0	61.0	89.9	78.2	88.4
DIFO-R	CVPR24	 	62.6	87.5	87.1	79.5	87.9	87.4	78.3	63.4	88.1	80.0	63.3	87.7	79.4	88.6
DIFO-V	CVPR24	 	70.6	90.6	88.8	82.5	90.6	88.8	80.9	70.1	88.9	83.4	70.5	91.2	83.1	90.3
ProDe-R	-	1	64.0	90.0	88.3	81.1	90.1	88.6	79.8	65.4	89.0	80.9	65.5	90.2	81.1	88.7
ProDe-V	-	1	72.7	92.3	90.5	82.5	91.5	90.7	82.5	72.5	90.8	83.0	72.6	92.2	84.5	91.0

Table 3: Closed-set SFDA results (%) on **DomainNet-126**. **SF** means source-free.

Method	Venue	SF	C→P	$C \rightarrow R$	$C \rightarrow S$	P→C	$P \rightarrow R$	$P \rightarrow S$	$R{\rightarrow}C$	$R{\rightarrow}P$	$R \rightarrow S$	$S{\rightarrow}C$	$S \rightarrow P$	$S \rightarrow R$	Avg.
Source	-	-	44.6	59.8	47.5	53.3	75.3	46.2	55.3	62.7	46.4	55.1	50.7	59.5	54.7
SHOT	ICML20	1	63.5	78.2	59.5	67.9	81.3	61.7	67.7	67.6	57.8	70.2	64.0	78.0	68.1
GKD	IROS21	1	61.4	77.4	60.3	69.6	81.4	63.2	68.3	68.4	59.5	71.5	65.2	77.6	68.7
NRC	NIPS21	1	62.6	77.1	58.3	62.9	81.3	60.7	64.7	69.4	58.7	69.4	65.8	78.7	67.5
AdaCon	CVPR22	1	60.8	74.8	55.9	62.2	78.3	58.2	63.1	68.1	55.6	67.1	66.0	75.4	65.4
CoWA	ICML22	1	64.6	80.6	60.6	66.2	79.8	60.8	69.0	67.2	60.0	69.0	65.8	79.9	68.6
PLUE	CVPR23	1	59.8	74.0	56.0	61.6	78.5	57.9	61.6	65.9	53.8	67.5	64.3	76.0	64.7
TPDS	IJCV24	1	62.9	77.1	59.8	65.6	79.0	61.5	66.4	67.0	58.2	68.6	64.3	75.3	67.1
DAPL-R	TNNLS23	X	72.4	87.6	65.9	72.7	87.6	65.6	73.2	72.4	66.2	73.8	72.9	87.8	74.8
ADCLIP-R	ICCVW23	Х	71.7	88.1	66.0	73.2	86.9	65.2	73.6	73.0	68.4	72.3	74.2	89.3	75.2
DAMP-R	CVPR24	X	76.7	88.5	71.7	74.2	88.7	70.8	74.4	75.7	70.5	74.9	76.1	88.2	77.5
DIFO-R	CVPR24	1	73.8	89.0	69.4	74.0	88.7	70.1	74.8	74.6	69.6	74.7	74.3	88.0	76.7
DIFO-V	CVPR24	1	76.6	87.2	74.9	80.0	87.4	75.6	80.8	77.3	75.5	80.5	76.7	87.3	80.0
ProDe-R	-	1	79.3	91.0	75.3	80.0	90.9	75.6	80.4	78.9	75.4	80.4	79.2	91.0	81.5
ProDe-V	-	1	83.2	92.4	79.0	85.0	92.3	79.3	85.5	83.1	79.1	85.5	83.4	92.4	85.0

Experiment

□ Other SFDA settings

- Comparison with CLIP
- Partial-set SFDA
- Open-set SFDA
- Generalized SFDA
- Source-Free Multi-Target DA
- Source-Free Multi-Source DA
- Test-Time Adaptation

Table 4: Comparison results with CLIP (%). Appendix $\mathbb{E}.1$ presents the full results.

Method	Office-31	Office-Home	VisDA	DomainNet-126
CLIP-R	71.4	72.1	83.7	72.7
ProDe -R	89.9	81.1	88.7	81.5
CLIP-V	79.8	76.1	82.9	76.3
ProDe -V	92.6	84.5	91.0	85.0

Table 5: Partial-set and open-set results (%) on **Office-Home**. Appendix $\mathbb{E}.1$ presents the full results.

Partial-set	Venue	Avg.	Open-set	Venue	Avg.
Source	_	62.8	Source	-	46.6
SHOT HCL CoWA	ICML20 NIPS21 ICML22	79.3 79.6 83.2	SHOT HCL CoWA	ICML20 NIPS21 ICML22	72.8 72.6 73.2
AaD	NIPS22	79.7	AaD	NIPS22	71.8
CRS	CVPR23	80.6	CRS	CVPR23	73.2
DIFO-V	CVPR24	84.1	DIFO-V	CVPR24	75.9
ProDe-V	-	84.2	ProDe-V	-	82.6

Table 6: Generalized SFDA results (%) on **Office-Home**. S, T are the results of the adapted target model on the source and target domains, i.e., Acc_s , Acc_t , respectively; **WAD** means With Anti-forgetting Design. Appendix E.1 presents the full results.

Madle a d	V	WAD	A	vg.	
Method	Venue	WAD	S (98.1-S)	T	Н
Source	_	×	98.1	59.2	73.1
SHOT	ICML20	×	84.2 (13.9)	71.8	77.5
GKD	IROS21	X	86.8 (11.3)	72.5	79.0
NRC	NIPS21	X	91.3 (6.8)	72.3	80.7
AdaCon	CVPR22	X	88.2 (9.9)	65.0	74.8
CoWA	ICML22	X	91.8 (6.3)	72.4	81.0
PLUE	CVPR23	X	96.3 (1.8)	66.9	79.0
TPDS	IJCV24	X	83.8 (14.3)	73.5	78.3
GDA	ICCV21	1	80.0 (18.1)	70.2	74.4
PSAT-ViT	TMM24	✓	86.4 (11.7)	83.6	85.0
DIFO-R	CVPR24	X	78.3 (19.8)	79.4	78.8
DIFO-V	CVPR24	X	78.0 (20.1)	83.1	80.5
ProDe-R	_	X	84.9 (13.2)	81.1	82.9
ProDe-V	-	Х	85.1 (13.0)	84.5	84.8

Avg.

63.8 60.5 60.7 60.3

Table 7: SF-MTDA, SF-MSDA and TTA results (%) on **Office-Home**. The full results of TTA are provided in Appendix E.1.

	Model	Venue	$Ar \rightarrow$	$\text{Cl}{\rightarrow}$	$\text{Pr}{\rightarrow}$	$Rw {\rightarrow}$	Avg.		Method	Venue
SF-MTDA	CoNMix	WACV23	75.6	81.4	71.4	73.4	75.4]	Tent	ICLR20
	ProDe-V	-	83.3	89.2	80.9	81.2	83.6		T3A	NeurIPS21
	Method	Venue	→Rw	→Pr	→Cl	→Ar	Avg.	TTA	CoTTA	CVPR22
SF-MSDA	SHOT-Ens	ICML20	82.9	82.8	59.3	72.2	74.3]	EATA	ICML22
SI-MSDA	DECISION	CVPR21	83.6	84.4	59.4	74.5	75.5		SAR	ICLR23
	ProDe-V-Ens	-	91.1	92.5	73.4	83.0	85.0		ProDe-V	-

Experiment

- Model analysis
- > Feature distribution
- > Training resource demands
- Parameter sensitivity
- Reliance on ViL models

Figure 3: Feature visualization comparison in 3D density charts.

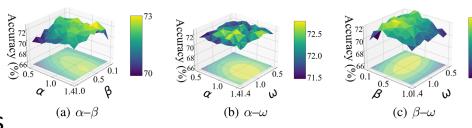


Table 22: Comparison of training resource demands (per iter.) on Ar→Cl in **Office-Home**.

# Item / Method	SHOT	AaD	ProDe
$\begin{array}{c c} 1 & GPU \text{ memory consumption} \downarrow (G) \\ 2 & Training \text{ times} \downarrow (s) \end{array}$	7.868	9.622	9.851
	0.407	0.547	0.491

Figure 5: Sensitivity analysis of hyper-parameters α , β and ω .

Table 19: Reliance analysis results (%) on **DomainNet-126** in the Closed-set SFDA setting.

Method	Venue	$C \rightarrow P$	$C \rightarrow R$	$C \rightarrow S$	$P{\rightarrow}C$	$P \rightarrow R$	$P \rightarrow S$	$R{\rightarrow}C$	$R \rightarrow P$	$R \rightarrow S$	$S \rightarrow C$	$S \rightarrow P$	$S \rightarrow R$	Avg.
DIFO w/ CLIP ProDe w/ CLIP	CVPR24	76.6 83.2	87.2 92.4	74.9 79.0	80.0 85.0	87.4 92.3	75.6 79.3	80.8 85.5	77.3 83.1	75.5 79.1	80.5 85.5	76.7 83.4		80.0 85.0
DIFO w/ OpenCLIP ProDe w/ OpenCLIP		91.2 86.7		79.4 84.4	85.2 89.2	91.2 93.7	79.7 84.5	85.7 89.6	82.7 86.6	80.5 84.4	85.9 89.5	81.3 86.7	91.4 93.7	84.6 88.6

Contribution

	We for the first time	investigate the	inaccurate p	predictions of V	/iL models in t	the SFDA context.
--	-----------------------	-----------------	--------------	------------------	-----------------	-------------------

- We formulate a novel ProDe method that reliably corrects the ViL model's predictions under the guidance of a proxy confidence theory.
- A mutual knowledge distilling regularization is introduced for better capitalizing on refined proxy predictions.

Takeaways

- **New view**: Understanding domain adaptation in a dynamic process is a promising solution;
- ☐ Multi-source challenge: Efficient strategies that adapts from heterogeneous generic external knowledge;
- Black box challenge: Models in the cloud, our proxy denoising may not work well since all details of the model are transparent to us.

Thank you!

Code and data can be accessed at: https://github.com/tntek/source-free-domain-adaptation

