

Determine-Then-Ensemble: Necessity of Top-K Union for Large Language Model Ensembling

ICLR

Paper

Code

Motivation

Existing model ensembling methods can be broadly categorized into three types: output-level, probability-level, and training-level approaches. Output-level methods aggregate the complete outputs of multiple candidate models. Probability-level methods, integrate outputs based on probability distributions at each generation step through the intersection or union of the vocabulary. Training-level methods utilize output probability vectors as labels for richer information extraction during training. While output-level methods are constrained by the limitations of existing outputs, and training-level methods introduce additional computational overhead, probability-level methods have garnered particular attention.

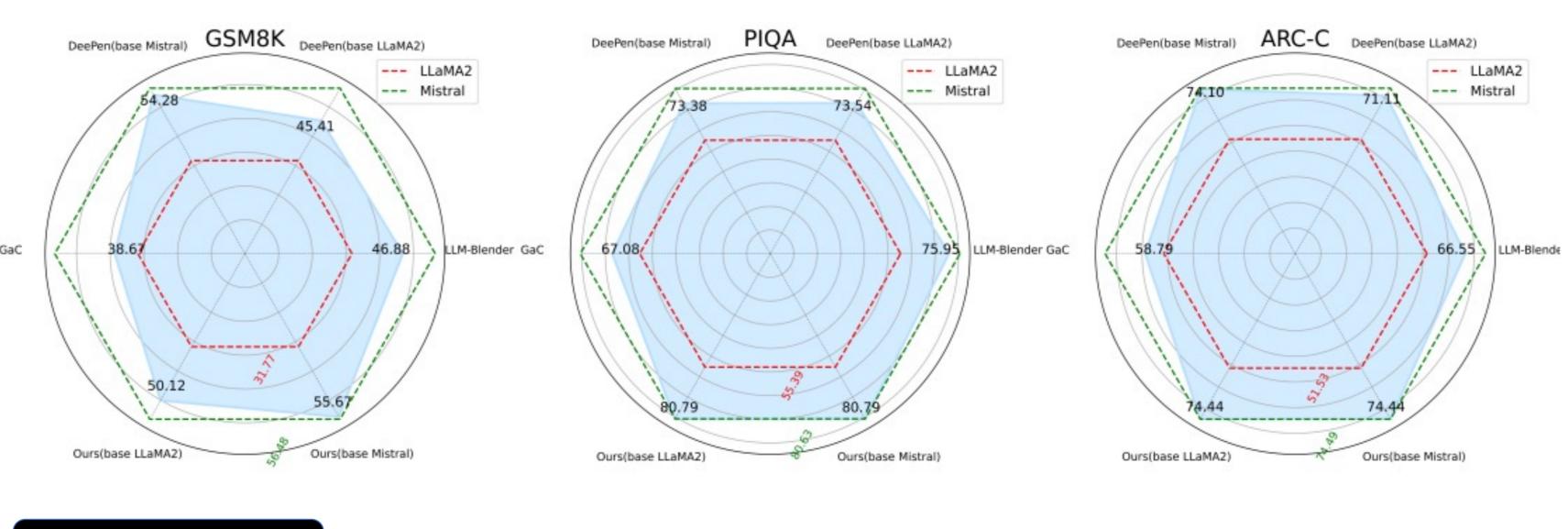
Challenges

- First, These approaches concentrate solely on the ensembling technique, sidestepping the crucial discussion of which types of models can be effectively combined.
- Second, these methods tend to align the probabilities across the **entire vocabulary at each generation step**. Such a strategy introduces substantial computational overhead during inference, which hinders performance and efficiency

Key Observation

We explored various factors that might affect the performance of model ensembling, including model size (e.g.,3B/7B/8B/13B/70B), model architecture (dense/sparse), performance discrepancies, tokenization strategies (BPE/WordPiece), vocabulary size (e.g., 102K/64K/32K) and tasks variations (e.g., text generation/QA/multiple choices). Finally, we identified three representative factors for further analyses, including performance discrepancy, vocabulary size, and tasks variations.

Yuxuan Yao, Han Wu†, Mingyang Liu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, Linqi Song†



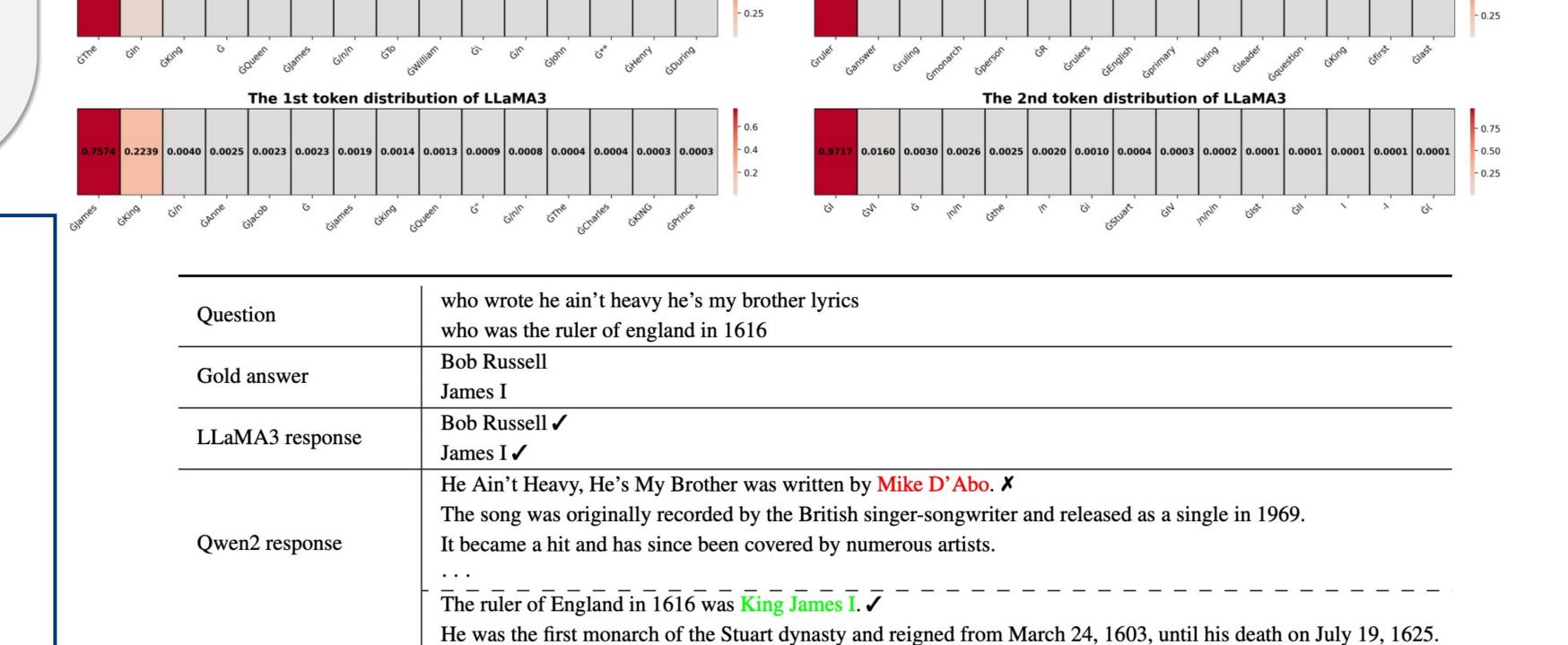
TAKEAWAY I:

Smaller performance gaps lead to greater gains from model ensembling.

Methods	Dataset		Methods	Dataset		Methods	Dataset	
Wiethods	GSM	PIQA	Wictiods	MMLU	ARC-C	Wiethous	NQ	ARC-C
DeepSeek-7B(102K)	59.67	72.66	DeepSeek-7B(102K)	46.97	58.73	Mistral-7B(32K)	24.25	74.49
Mistral-7B(32K)	56.48	80.63	LLaMA2-13B(32K)	49.61	51.53	Yi-6B(64K)	22.55	73.21
LLM-BLENDER	61.16	76.54	LLM-BLENDER	48.86	57.84	LLM-BLENDER	22.97	72.48
	(+1.49)	(-4.09)		(-0.75)	(-0.89)		(-1.28)	(-2.01)
DEEPEN(DeepSeek-7B)	55.00	77.65	DEEPEN(DeepSeek-7B)	52.81	60.00	DEEPEN(Mistral-7B)	25.26	76.50
	(-4.67)	(+4.99)		(+5.84)	(+1.27)		(+1.01)	(+1.01)
DEEPEN(Mistral-7B)	61.28	76.32	DEEPEN(LLaMA2-13B)	54.09	62.39	DeePen(Yi-6B)	22.80	77.86
	(+4.80)	(-4.31)		(+4.48)	(+10.86)		(+0.25)	(+4.65)
Ours(DeepSeek-7B)	62.77	81.81	Ours(DeepSeek-7B)	48.90	60.16	Ours(Mistral-7B)	24.76	76.54
	(+3.10)	(+9.15)		(+1.93)	(+1.43)		(+0.51)	(+2.05)
Ours(Mistral-7B)	58.88	81.81	Ours(Mistral-7B)	48.90	60.16	Ours(Yi-6B)	23.28	76.54
	(+2.40)	(+1.18)		(-0.71)	(+8.63)		(+0.73)	(+3.33)

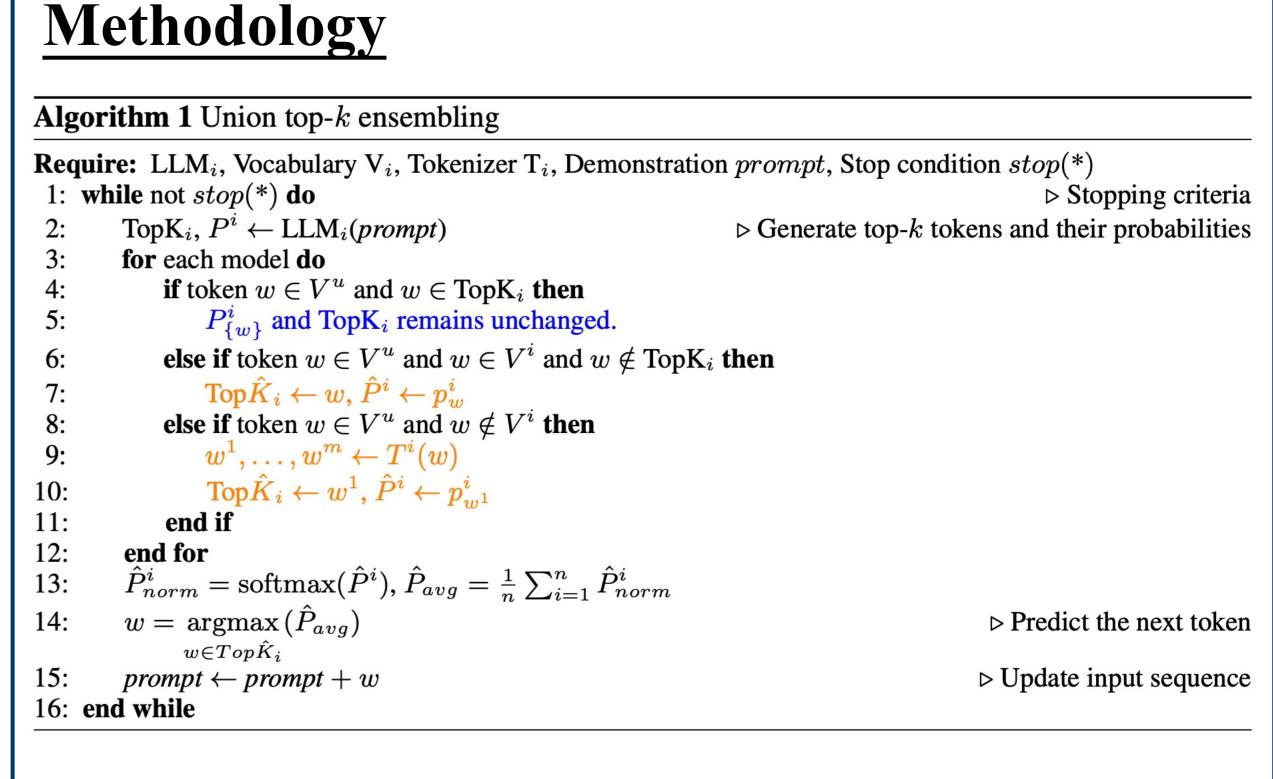
TAKEAWAY II:

The influence of vocabulary size for model ensembling is marginal.



TAKEAWAY III:

Even though the performance and vocabulary size are aligned across models, substantial differences in response style could also hinder successful ensembling.



Experiments

- (1)UNITE enhances individual model performance when the base models exhibit similar performance levels.
- (2)UNITE demonstrates greater robustness and generality.
- (3) Collaborating with comparable LLMs does not necessarily yield better results

Method		Avg.								
	GSM8K	PIQA	ARC-C	MMLU	Avg.					
LLaMA3	78.77	79.08	79.01	64.58	75.36					
LLaMA3.1	80.83	82.86	79.49	66.69	77.47					
Qwen2	80.78	84.57	84.92	64.96	78.81					
Two-model ensembling (LLaMA3+Qwen2)										
LLM-BLENDER	82.69 (+1.91)	82.53 (-2.04)	82.98 (-1.94)	62.07 (-2.89)	77.57 (-1.24)					
DEEPEN	- OOM -									
GAC	80.67 (-0.11)	80.96 (-3.61)	84.93 (+0.01)	67.05 (+2.09)	78.40 (-0.41)					
UniTE	84.17 (+3.39)	85.53 (+0.96)	85.07 (+0.15)	69.78 (+4.82)	81.14 (+2.33)					
Three-model ensembling										
LLM-BLENDER	83.30(+2.52)	83.47(-1.10)	83.48(-1.44)	62.55(-2.41)	78.20(-0.61)					
DEEPEN	- OOM -									
UniTE	84.99 (+4.21)	84.98 (+0.41)	85.39 (+0.47)	69.12 (+4.16)	81.12 (+2.31)					

