

LOIRE: LifelOng learning on Incremental data via pretrained language model gRowth Efficiently

Xue Han, Yitong Wang, Junlan Feng, Wenchun Gao, Qian Hu, Chao Deng JIUTIAN Team, China Mobile Research Institute

1. Introduction

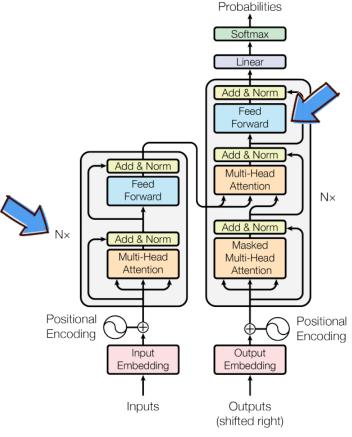
Background:

New data from other sources → PLM's performance may decline → training from scratch: time and computation intensive

Motivation:

Lifelong learning pipelines by employing model growing approaches

- Growth schedules (when and where) only consider layers and width of FFN
- **Growth operators** (inherit previous knowledge) non-strict function preservation
- Data distribution is shifting, causing catastrophic forgetting



Output

1. Introduction

Contributions:

We propose the LOIRE (Lifelong learning framewOrk on Incremental data via PLMs gRowth Efficiently)

- ◆ a novel plug-in layer growth operator that replicates the selected layers and inserts them between the original layer and the subsequent layer, leveraging concept of residual connection.
- a systematic definition for multi-dimensional operators and schedules that includes the layers, the hidden dimension, the FeedForward Network dimension, and the number of heads in the multi-head attention.
- an iterative distillation warmup strategy to accommodate the new data distribution without forgetting earlier distributions during model growth

Definition of lifelong learning with an efficient model growth strategy:

K stages model growth: $M^{(t)}\colon M_1^{(t)}\Rightarrow M_2^{(t)}...\Rightarrow M_K^{(t)}$

Optimal Objective:

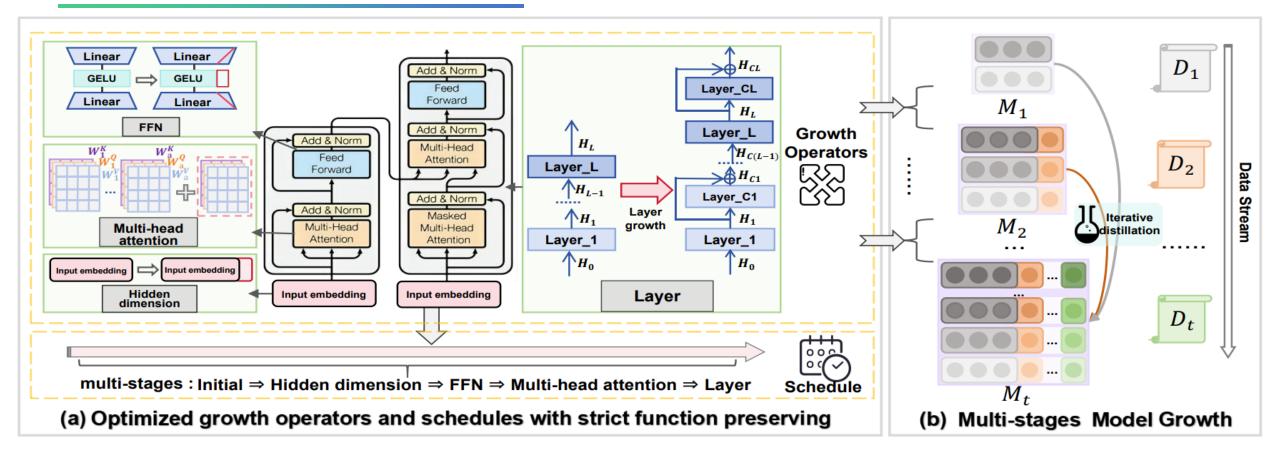
$$argMin\{\mathcal{L}(\overline{\varepsilon}), \mathcal{T}(\overline{\varepsilon})\}$$

$$s.t. \begin{cases} \overline{\varepsilon} = \{M_k(x; \theta_k)\}_{k=1}^K \\ \theta_k = \varphi(\theta_k^+) + \theta_{k-1}, \varphi \in \overline{\psi} \end{cases}$$

Strict function preserving:

$$\forall x, M_k(x; \theta_k) = M_k(x; \varphi(\theta_k^+) + \theta_{k-1}) = M_{k-1}(x; \theta_{k-1})$$

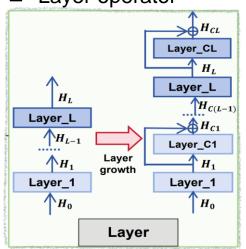
The overall framework of the proposed LOIRE



- (a) the growth operators and schedules over all four possible Transformer dimensions
- (b) multi-stage model growth procedure with an interactive distillation approach

Growth operator with strict function preservation

Layer operator



$$H_{CL}$$

$$H_{CL}$$

$$H_{CL}$$

$$H_{CL}$$

$$H_{CL-1}$$

$$H_{CL-1}$$

$$H_{CL-1}$$

$$H_{CL}$$

$$H_{CL}$$

$$H_{CL}$$

$$H_{CL}$$

$$H_{CL}$$

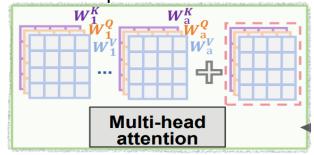
$$Trans(H^{C(L-1)}) = Trans(H^{L-1})$$

$$= Trans^{[2]}(H^{C(L-2)}) = Trans^{[2]}(H^{L-2})$$

$$\vdots$$

$$= Trans^{[L-1]}(H^{C1}) = Trans^{[L-1]}(H^{1})$$

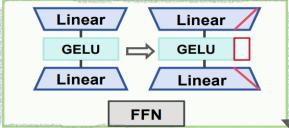
MHA operator



$$W_i^{K/Q/V} = \begin{cases} W_i^{K/Q/V} & i \leq a_1\\ any_value & a_i < 1 \leq a_2 \end{cases}$$

$$W^{O}_{(a_{1} \times d) \times h} \Rightarrow (W^{O})'_{(a_{2} \times d) \times h} = \begin{bmatrix} W^{O}_{(a_{1} \times d) \times h} \\ N \\ ((a_{2} - a_{1}) \times d) \times h \end{bmatrix}$$

FFN operator



$$W_{h \times f_{1}}^{l_{1}} \Rightarrow (W_{h \times f_{2}}^{l_{1}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{1}} & R_{h \times (f_{2} - f_{1})}^{W_{l_{1}}} \\ h_{h \times f_{1}} & h_{h \times (f_{2} - f_{1})} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{1}} \Rightarrow (b_{h \times f_{1}}^{l_{1}})' = \begin{bmatrix} b_{h \times f_{1}}^{l_{1}} & R_{h \times (f_{2} - f_{1})}^{W_{l_{1}}} \\ h_{h \times f_{1}} & h_{h \times (f_{2} - f_{1})} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} b_{h \times f_{1}}^{l_{1}} & R_{h \times (f_{2} - f_{1})}^{W_{l_{1}}} \\ h_{h \times f_{1}} & h_{h \times f_{1}} & h_{h \times f_{1}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & N_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

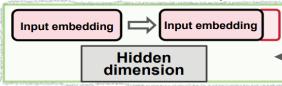
$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & W_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & W_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & W_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}} & h_{h \times f_{1}}^{l_{2}} \end{bmatrix}$$

$$W_{h \times f_{1}}^{l_{2}} \Rightarrow (b_{h \times f_{1}}^{l_{2}})' = \begin{bmatrix} W_{h \times f_{1}}^{l_{2}} & W_{h \times f_{1}}^{l_{2}} \\ h_{h \times f_{1}$$

■ Hidden dimension operator



$$W_{h_1 \times d}^{K/Q/V} \Rightarrow (W_{h_2 \times d}^{K/Q/V})' = \begin{bmatrix} W_{h_1 \times d} \\ R \\ (h_2 - h_1) \times d \end{bmatrix}$$

$$\frac{W^O}{(a\times d)\times h_1}\Rightarrow {(W^O)\choose (a\times d)\times h_2}'=\begin{bmatrix}W^O&N\\ (a\times d)\times h_1&(a\times d)\times (h_2-h_1)\end{bmatrix}$$

$$\begin{array}{l} \text{Hidden states:} \\ H \\ s \times h_1 \Rightarrow H^{'} \\ s \times h_2 = \begin{bmatrix} H & N \\ s \times h_1 & s \times (h_2 - h_1) \end{bmatrix} \end{array}$$

MHA:
$$W_{h_1 \times f}^{l_1} \Rightarrow (W_{h_2 \times f}^{l_1})' = \begin{bmatrix} W_{h_1 \times f}^{l_1} \\ h_1 \times f \\ R \end{bmatrix}$$

$$(W_{h_2 \times f}^{l_1} \Rightarrow (W_{h_2 \times f}^{l_1})' = \begin{bmatrix} W_{h_1 \times f}^{l_1} \\ R \\ (h_2 \times h_1) \times f \end{bmatrix}$$

$$W_{f \times h_1}^{l_2} \Rightarrow (W_{f \times h_2}^{l_2})' = \begin{bmatrix} W_{f \times h_1}^{l_2} & N \\ f \times h_1 & f \times (h_2 - h_1) \end{bmatrix}$$

$$\underset{(a\times d)\times h_1}{\overset{W^O}{\rightarrow}} \circ (\underset{(a\times d)\times h_2}{\overset{W^O}{\rightarrow}})^{'} = \begin{bmatrix} \underset{(a\times d)\times h_1}{\overset{W^O}{\rightarrow}} & \underset{(a\times d)\times (h_2-h_1)}{\overset{N}{\rightarrow}} \end{bmatrix} \quad \underset{s\times h_1}{\overset{b^l2}{\rightarrow}} \Rightarrow \left(\underset{s\times h_2}{\overset{b^l2}{\rightarrow}}\right)^{'} = \begin{bmatrix} \underset{s\times h_1}{\overset{b^l2}{\rightarrow}} & \underset{s\times (h_2-h_1)}{\overset{N}{\rightarrow}} \end{bmatrix}$$

Optimized multi-stage growth schedule

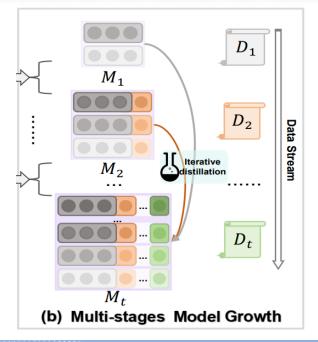
growing the layers and heads in later stages and having a larger hidden dimension in earlier stages can lead to better model performance

Iterative Distillation warmup

minimize the difference between the distributions of previous models and the current one.

$$L_{distill} = -\sum_{i=v_n \in V}^{m} P(v_n | x_{i < m}, \theta_j) log \frac{P(v_n | x_{i < m}, \theta_j)}{P(v_n | x_{i < m}, \theta_t)}, j \le t - 1$$

$$L_{final} = L_{LM} + \sum_{j \le t-1} \beta_j L_{distill-j}$$



3. Experiments

How does LOIRE perform during the pre-training stage?

Schedule	M_1		M_2		M_3		M_4		M_5	
Metrics	AP	AP+	AP	AP+	AP	AP+	AP	AP+	AP	AP+
Growing M_1 to M_5 from scratch										
GPT_S	38.69	-	48.83	23.44	82.15	96.61	82.30	117.04	59.59	83.25
GPT_L	22.43	-	27.69	12.86	48.87	55.50	47.75	64.3	36.01	48.88
GPT_R	22.43	-	23.78	3.42	25.92	6.37	22.61	9.14	20.66	8.58
Token KD	38.69	_	48.48	22.93	56.94	90.15	80.53	112.19	56.77	78.35
ER	38.69	=	42.28	9.87	45.30	14.45	40.24	21.67	35.94	19.22
ELLE	38.69	-	34.33	-0.79	31.72	1.21	25.595	4.3	21.75	3.13
LOIRE-GPT1	38.69	_	31.72	-5.32	29.18	-2.68	24.63	-0.94	19.19	-3.84
Growing M_1 to M_5 from loading an PLM										
LOIRE-GPT2	32.39	-	26.60	-5.79	25.55	-3.95	25.28	-2.90	23.24	-4.22
Growing M_1 to M_5 from loading an PLM										
PPL	Init	Final	Init	Final	Init	Final	Init	Final	Init	Final
LOIRE-Bert	457.41	6.72	7.48	5.68	5.9	4.98	5.18	4.7	4.79	3.91

LOIRE works both on pre-training from scratch and continually training from loading the checkpoint

Still deviations in the function-preserving

LOIRE shows that it is better at keeping knowledge as the training data grows

3. Experiments

How does LOIRE perform in terms of training efficiency?

		BERT base						
		Method	Wall Time					
Schedule	M_1	M_2	M_3	M_4	AVG	Wiethou	wan inic	
$\frac{LOIRE}{GPT_{-}L}$	21.20	78.42	85.69	85.69	76.20	LIGO	48h,25min	
$\frac{LOIRE}{GPT_R}$	19.08	70.58	77.12	77.12	70.78	LOIRE-Bert	28h,48min	

LOIRE can effectively save training time and improve training efficiency

3. Experiments

How does LOIRE perform on the multi-domain downstream tasks?

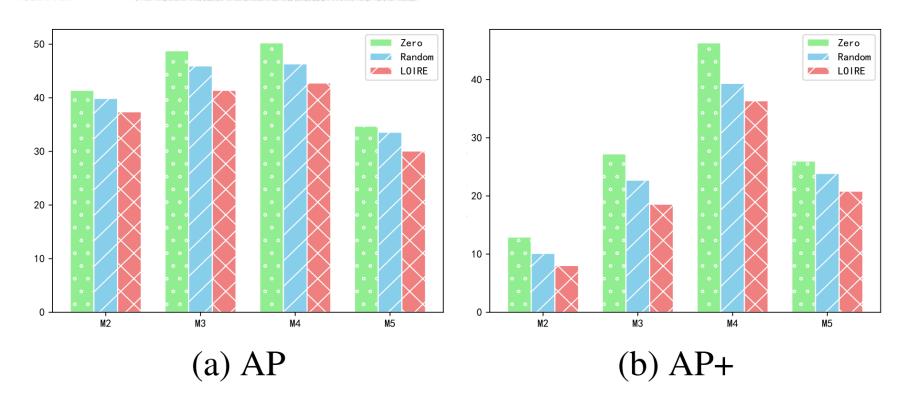
Domain	WB		NEWS		REV		BIO		CS		Ava
Task	MNLI	QNLI	Hyper	Ag news	HELPNESS	IMDB	CHEM	RCT	ACL-ARC	SCIERC	Avg
GPT_S	73.39	80.79	77.08	92.51	86.16	91.58	78.01	86.99	69.53	80.00	81.61
GPT_L	78.69	81.23	75.76	93.02	86.41	92.09	79.74	87.23	70.31	82.91	82.74
GPT_R	79.53	82.35	76.38	93.33	86.93	93.08	80.57	87.36	69.53	82.70	83.18
Token KD	75.58	80.61	75.16	92.67	86.32	91.55	76.12	86.91	69.53	78.54	81.30
ER	77.05	80.94	78.24	92.61	87.57	91.52	77.98	87.13	70.31	82.70	82.61
ELLE	78.12	83.77	78.75	93.21	86.59	92.81	79.98	87.00	73.43	79.79	83.35
LOIRE-GPT1	79.60	84.34	81.68	93.12	87.16	93.57	81.27	87.40	78.13	82.08	84.84

LOIRE achieves comparable performance while saving computational costs.

3. Ex

3. Experiments

Are our function-preserving operators effective?



LOIRE's AP and AP+ are significantly lower than those of zero and random

4. Future works

- ◆ A gap with existing LLMs with parameters up to 65 billion.
- ◆ There are still some deviations from the function-preserving theory in the actual experimental results.
- ◆ LOIRE performs worse on a few downstream tasks than other baselines.
- ◆ Other data-driven modalities, such as images and video.

Thanks for your listening!

hanxueai@chinamobile.com