

ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation

<u>Tianchen Zhao</u>^{1,2}, <u>Tongcheng Fang</u>^{1,2}, <u>Enshu Liu</u>¹, <u>Rui Wan</u>¹, <u>Widyadewi Soedarmadji</u>¹, <u>Shiyao Li</u>¹², <u>Zinan Lin</u>³, <u>Guohao Dai</u>²⁴, <u>Shengen Yan</u>², <u>Huazhong Yang</u>¹, <u>Xuefei Ning</u>^{1†‡}, <u>Yu Wang</u>^{1†},

¹Tsinghua University, ²Infinigence AI ³Microsoft ⁴Shanghai Jiao Tong University

[†]Corresponding authors [‡]Project Advisor

消事大学电子工程系

Department of Electronic Engineering, Tsinghua University

- **Background & Motivation**
- **Preliminary Analysis**
- Methodology
- **Experimental Results**

NICS-efc Lab Page 2

Backgrounds: Visual Generation

> Recent advances of Visual Generation:

Midjourney generated Image won art award

OpenAl SORA generates Realistic videos

Backgrounds: Diffusion Model

➤ Diffusion Model:

- Forward Process: Gradually add gaussian noise of different levels
- Backward Process: Gradually denoise the gaussian noise
- Intuition: the NN learns to predict the "noise" at each timestep.
 - "Learning Data Distribution" -> "Denoising at different noise levels (timesteps)"

Reverse / denoising process

Backgrounds: Text-Conditioned Generation Flow

> Task: Text-Conditioned Generation

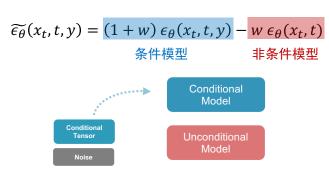
> Components:

- **Diffusion Network:** U-Net / Diffusion Transformer
- Text Encoder: CLIP / T5 / Language Model (ChatGLM)
- VAE Decoder: CNN-based (8x Upsample)

Random Noise Diffusion CrossAttn CrossAttn Text-Encoder Generated Image

CFG (Classifier-free Guidance)

- Along Batch-dimension
- Inference 2 Times to generate
 1 image, with and without
 Inference



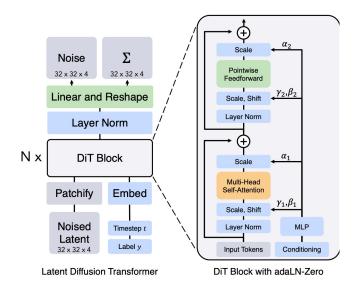
Classifier-free Guidance

Backgrounds: Diffusion Transformer

➤ Model Architecture:

- Transformer Blocks
- AdaLN Modulation: Use Linear layer to generate affine transform parameters for x
 - to incorporate the **timestep and condition** signal (C = TimeEmb + Cond)

```
class DiTBlock(nn.Module):
   A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    def init (self, hidden size, num heads, mlp ratio=4.0, **block kwargs);
        super().__init__()
       self.norm1 = nn.LayerNorm(hidden size, elementwise affine=False, eps=1e-6)
       self.attn = Attention(hidden_size, num_heads=num_heads, gkv_bias=True, **block_kwargs)
       self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
       mlp_hidden_dim = int(hidden_size * mlp_ratio)
       approx gelu = lambda: nn.GELU(approximate="tanh")
       self_mln = Mlndin_features=hidden_size, hidden_features=mlp hidden_dim, act_layer=approx_gelu, drop=0
       self.adaLN_modulation = nn.Sequential(
           nn.SiLU(),
           nn.Linear(hidden size, 6 * hidden size, bias=True)
    def forward(self, x, c):
       shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c) chunk(6, dim=1)
       x = x + qate msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift msa, scale msa))
       x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x
```



Backgrounds: Efficiency Problem

> The Diffusion Generative Model faces severe "Efficiency Challenge"

Latency Challenge:

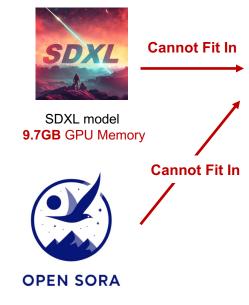
SDXL (50 steps) generate 1024x1024 image on RTX3090: **30** s

OpenSORA (100 steps) generate 2s (512x512x16 Frames) image on RTX3090: 1-2 min

Image Editing
Needs Fast (<1s) Feedback

Content Creation
Too Long Waiting Time

Memory Challenge:



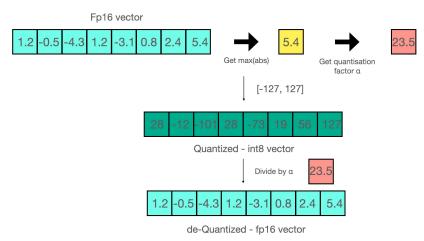
GEFORGERTX 4070

Desktop GPU: RTX4070 8GB GPU Memory

OpenSORA model ~12 GB GPU Memory

Backgrounds: Model Quantization

- > The model quantization is an effective technique for reducing memory cost
 - Reduce the Data bit-width
 - Reduce memory: could store 4x more param size (Compared with FP32)
 - Reduce computational complexity: more computing power for low bit-width operands
 - A Few Concepts:
 - Quant/DeQuant Scheme
 - Quant Params:
 - Scale & ZeroPoint
 - Granularity (Per-group)
 - Static/Dynamic Quant



https://huggingface.co/blog/merve/quantization

Backgrounds: Model Quantization

- > The model quantization is an effective technique for reducing memory cost
 - Quantization Process:

$$x_{ ext{int}} = Q(x; s, z, b) = \operatorname{clamp}\left(\left\lfloor rac{x}{s}
ight
vert + z, 0, 2^b - 1
ight).$$
 $s = (\max(x) - \min(x))/(2^b - 1)$

• Objective:

$$\min \mathcal{L}_{ ext{task}}(f_{FP}, f_q) \quad \Rightarrow \quad \min_{W_q, X_q} \sum_{l}^{L} \left(\|W^{(l)} - Q(W^{(l)})\|_2^2 + \|X^{(l)} - Q(X^{(l)})\|_2^2 \right),$$

Minimize Prediction between FP and Quantized model.

Minimize Quantization Error For Each Layer.

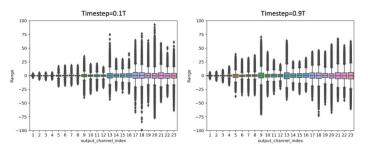
https://huggingface.co/blog/merve/quantization

Goals & Novelty

- > Apply Quantization to Diffusion Transformers for Video & Image Generation.
 - What's NEW?
 - Pioneer in **Diffusion Transformer** Quantization
 - -> Existing Diffusion Quantization focuses on SD-like **U-Net (CNN) based** Model
 - -> Existing Transformer Quantization (LLM) does not include unique "timestep"
 - Pioneer in Quantization for Video Generation Task
 - -> Video Generation have unique challenges

	Granularity	Scheme
CNN	Per-tensor	Static
TR	Per-token	Dynamic

Transformer's Unique Challenge (Compared with CNNs): Dynamic Act Quantize & Per-token Quantization



Diffusion's Unique Challenge: Varying Activation Across Timesteps

Goals & Novelty

> Existing Quantization Methods faces challenges when quantizing DiTs

FP16

ViDiT-Q W8A8

Baseline W8A8

消事大学电子工程系

Department of Electronic Engineering, Tsinghua University

- Background & Motivation
- 2 Preliminary Analysis
- 3 Methodology
- 4 Experimental Results

2025/4/21 NICS-efc Lab Page 12

Preliminary Analysis: Quantization Error

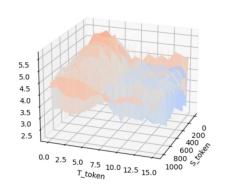
- > The model quantization is an effective technique for reducing memory cost
 - Quantization Process:

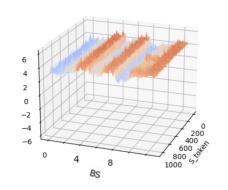
$$x_{ ext{int}} = Q(x; s, z, b) = \operatorname{clamp}\left(\left\lfloor rac{x}{s}
ight
vert + z, 0, 2^b - 1
ight).$$
 $s = (\max(x) - \min(x))/(2^b - 1)$

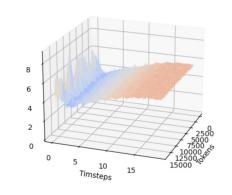
- Quantization Error Analysis:
 - Clipping Error: When using Minmax Scaling, is 0
 - Rounding Error: Within range $\left[-\frac{s}{2}, \frac{s}{2}\right]$
- The Major Source of Quantization Failure: large **data variation**, some **outliers** causes **large** s, not suitable for most elements. Measured by "Incoherence": $\frac{Max(X)}{Avg(X)}$ $X = [x_i, ..., x_g]$
- Adopting finer granularity (smaller group size g) reduces the incoherence.

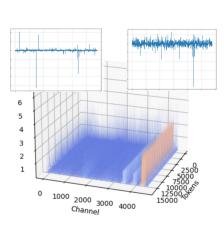
Findings: Unique Challenges for DiTs

- > We conclude the unique challenges for DiT Quantization
 - Large Data Variation Across Different Dimensions:









CFG-wise Variation

Timestep-wiseVariation

Time-varying Channel-wise Variation

Findings: Unique Challenges for Video Gen

➤ Video Generation Quality should be evaluated from multiple perspectives.

$$\min \mathcal{L}_{\text{task}}(f_{FP}, f_q) \quad \Rightarrow \quad \min_{W_q, X_q} \sum_{l}^{L} \left(\|W^{(l)} - Q(W^{(l)})\|_2^2 + \|X^{(l)} - Q(X^{(l)})\|_2^2 \right),$$

The MSE-based proxy task may not be enough

Text Alignment

Visual Quality (Fidelity)

Time Consistency

消事大学电子工程系

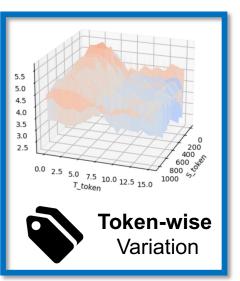
Department of Electronic Engineering, Tsinghua University

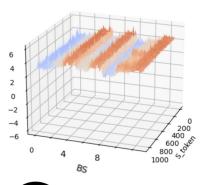
- Background & Motivation
- 2 Preliminary Analysis
- 3 Methodology
- 4 Experimental Results

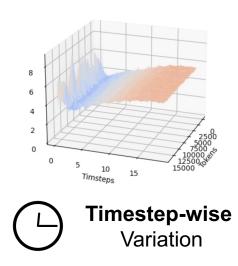
2025/4/21 NICS-efc Lab Page 16

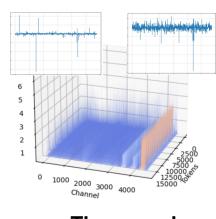
Method 1: Fine-grained & Dynamic Quantization

- ➤ Why Existing Methods Fails?
 - Current CNN-target Quantization Scheme:
 - Tensor-wise Activation Quant Scheme







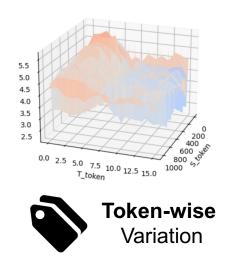


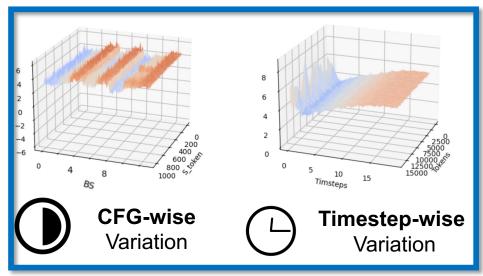
Method 1: Fine-grained & Dynamic Quantization

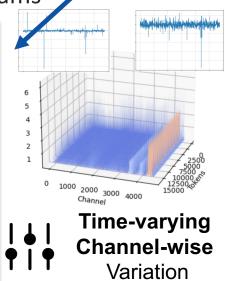
- ➤ Why Existing Methods Fails?
 - Current CNN-target Quantization Scheme:
 - Static Activation Quant Scheme

• Timestep-wise Calibration & Adjustment for Quant Params

Dynamic Quant Intrinsically Solves This

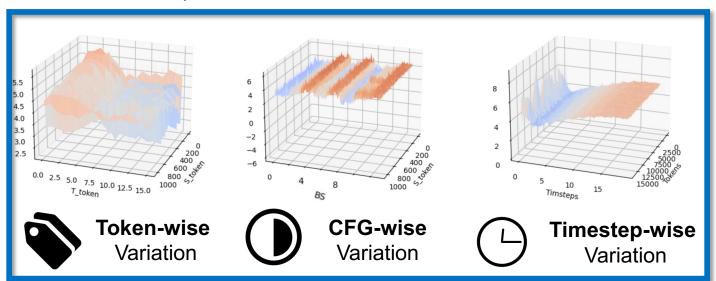


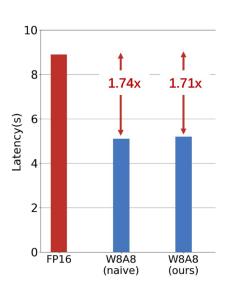




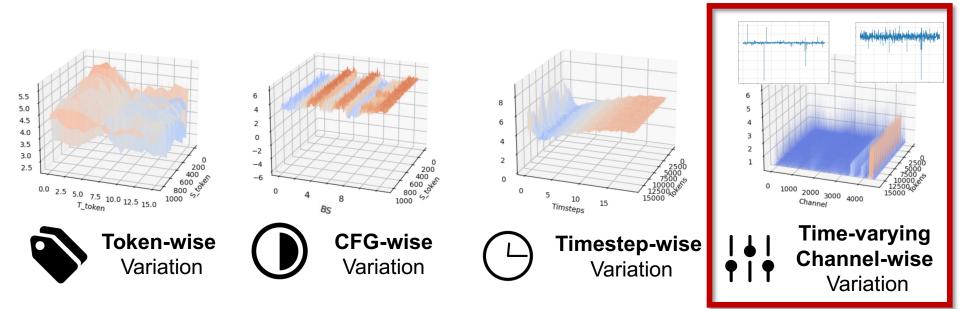
Method 1: Fine-grained & Dynamic Quantization

- > Solution: Adopting Fine-grained and Dynamic Activation Quant
 - (Which is the Standard Practice in LLM Quantization)
 - We highlight its importance and prove that it has Negligible Overhead during CUDA implementation





- > The Remaining Challenge: Channel Imbalance
 - By adopting fine-grained per-token quantization, the group consists of only [C] elements, However, variation still exists across channels.



- > The Remaining Challenge: Channel Imbalance
 - It's well studied in LLM Quantization, two schemes

Scaling-based

$$Y = X \cdot W^{T} = \left(\frac{X}{S}\right) * (W * S)$$

$$Q(W)_{INT3}$$
scale before quantize
$$\alpha$$
average mag.
$$X$$

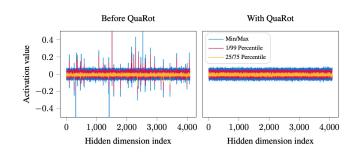
(c) Scale the weights before quantization (PPL 13.0)

AWQ [MLSYS 2024]

Rotation-based

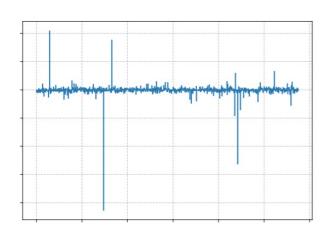
$$Y = X \cdot W^T = (X \cdot H)(W \cdot H)^T$$

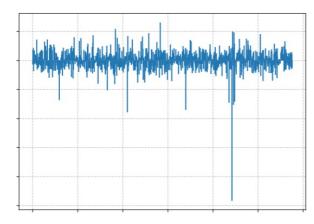
Orthogonal Matrix $H \cdot H^T = I$

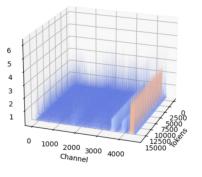


Quarot [NeurlPS 2024]

- ➤ Unique Challenge: **Time-Varying Channel Imbalance**
 - By adopting fine-grained per-token quantization, the group consists of only [C] elements, However, variation still exists across channels.

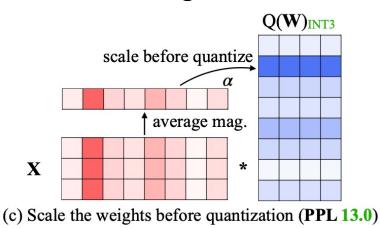






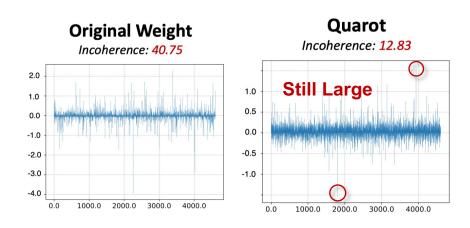
> Existing Method's Challenge for Timestep-wise Channel Imbalance

Scaling-based



- Should use different α for different timesteps
- Need to store Multiple Weights

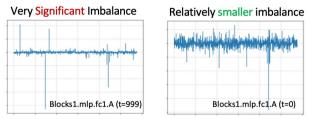
Rotation-based



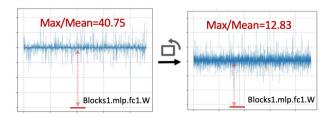
 Could not address very large and distributed Outliers

Exploring where Timestep-wise Channel Imbalance comes from

Existing Channel Balance's Challenges

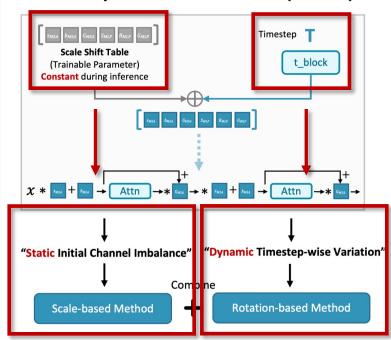


Scaling-based: Single α could not fit time-varying distribution



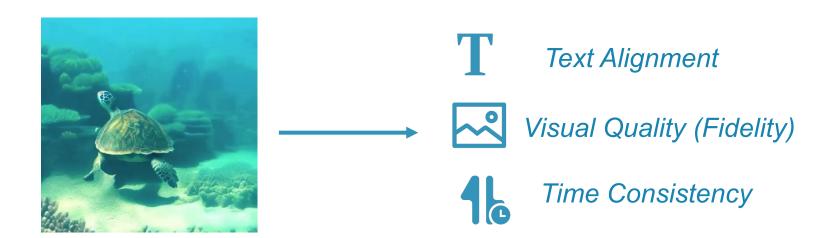
Rotation-based: Outlier still exists after rotation, 12.8x is hard for 4-bit(16 levels)

Static-Dynamic Channel Balance (Sec. 4.2)



Method 3: Metric Decoupled Mixed Precison

➤ Video Generation Quality should be evaluated from multiple perspectives. How to preserve Quantization's effect on these perspectives?

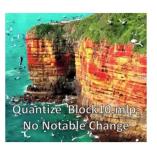


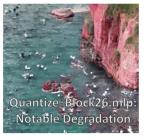
Method 3: Metric Decoupled Mixed Precison

- ➤ Motivation: -> Mixed Precision
 - Quantization under lower bitwidth (W4) is bottlenecked by some layer
 - Quantization for different layer types have unique correlation with evaluation

Baseline W4A8: "Blank Frames"

Failure under W4





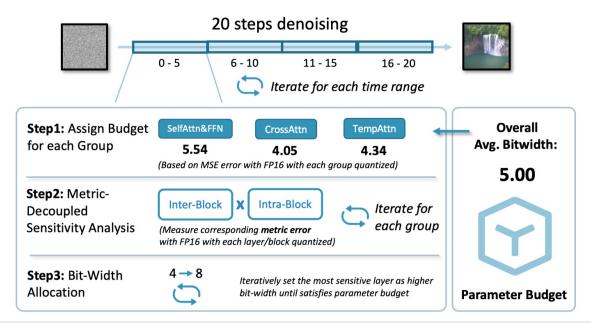
Layers have diverse quantization sensitivity

Quantization effects are highly correlated with layer types

Method 3: Metric Decoupled Mixed Precison

- ➤ How to consider different aspects for Mixed Precision?
- ➤ Metric-decoupled Mixed Precision

Metric-Decoupled Mixed Precision (Sec. 4.3)



消事大学电子工程系

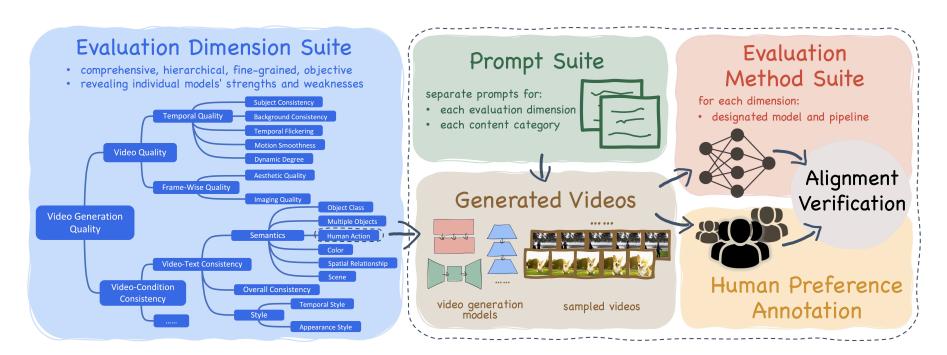
Department of Electronic Engineering, Tsinghua University

- Background & Motivation
- 2 Preliminary Analysis
- 3 Methodology
- 4 Experimental Results

2025/4/21 NICS-efc Lab Page 28

Main Results: T2V VBench

> Vbench: Comprehensive Evaluation Suite from various perspectives

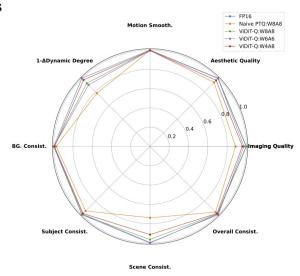


Main Results: T2V VBench

➤ Vbench: Comprehensive Evaluation Suite from various perspectives

Table 1: **Performance of ViDiT-Q text-to-video generation on VBench evaluation benchmark suite.** The bit-width "16" represents FP16 without quantization. We omit some baselines that fails to produce readable content under W4A8. The mixed precision are applied for ViDiT-Q W4A8.

Method	Bit-width (W/A)	Imaging Ouality	Aesthetic Quality	Motion Smooth.	Dynamic Degree	BG. Consist.	Subject Consist.	Scene Consist.	Overall Consist.
	(W/A)	Quanty	Quanty	Sinoon.	Degree	Consist.	Consist.	Consist.	Consist.
-	16/16	63.68	57.12	96.28	56.94	96.13	90.28	39.61	26.21
Q-Diffusion	8/8	60.38	55.15	94.44	68.05	94.17	87.74	36.62	25.66
Q-DiT	8/8	60.35	55.80	93.64	68.05	94.70	86.94	32.34	26.09
PTQ4DiT	8/8	56.88	55.53	95.89	63.88	96.02	91.26	34.52	25.32
SmoothQuant	8/8	62.22	55.90	95.96	68.05	94.17	87.71	36.66	25.66
Quarot	8/8	60.14	53.21	94.98	66.21	95.03	85.35	35.65	25.43
ViDiT-Q	8/8	63.48	56.95	96.14	61.11	95.84	90.24	38.22	26.06
Q-DiT	4/8	23.30	29.61	97.89	4.166	97.02	91.51	0.00	4.985
PTQ4DiT	4/8	37.97	31.15	92.56	9.722	98.18	93.59	3.561	11.46
SmoothQuant	4/8	46.98	44.38	94.59	21.67	94.36	82.79	26.41	18.25
Quarot	4/8	44.25	43.78	92.57	66.21	94.25	84.55	28.43	18.43
ViDiT-Q	4/8	61.07	55.37	95.69	58.33	95.23	88.72	36.19	25.94



Main Results: T2V VBench

➤ Vbench: Comprehensive Evaluation Suite from various perspectives

Baseline W8A8: "Jitter and Color Shift"

FP16

VIDIT-Q W8A8

Baseline W8A8: "Content Changes"

Main Results: T2V Metrics

> Metrics:

• CLIPSIM/CLIP-Temp | VQA | FlowScore

Method	Bit-width (W/A)	CLIPSIM	CLIP-Temp	VQA- Aesthetic	VQA- Technical	Δ Flow Score. (\downarrow)
_	16/16	0.1797	0.9988	63.40	50.46	(-
Q-Diffusion	8/8	0.1781	0.9987	51.68	38.27	0.328
Q-DiT	8/8	0.1788	0.9977	61.03	34.97	0.473
PTQ4DiT	8/8	0.1836	0.9991	54.56	53.33	0.440
SmoothQuant	8/8	0.1951	0.9986	59.78	51.53	0.331
Quarot	8/8	0.1949	0.9976	58.73	52.28	0.215
ViDiT-Q	8/8	0.1950	0.9991	60.70	54.64	0.089
Q-DiT	6/6	0.1710	0.9943	11.04	1.869	41.10
PTQ4DiT	6/6	0.1799	0.9976	59.97	43.89	0.997
SmoothQuant	6/6	0.1807	0.9985	56.45	48.21	29.26
Quarot	6/6	0.1820	0.9975	61.47	53.06	0.146
ViDiT-Q	6/6	0.1791	0.9984	64.45	51.58	0.625
Q-DiT	4/8	0.1687	0.9833	0.007	0.018	3.013
PTQ4DiT	4/8	0.1735	0.9973	2.210	0.318	0.108
SmoothQuant	4/8	0.1832	0.9983	31.96	22.85	0.415
Quarot	4/8	0.1817	0.9965	47.36	33.13	0.326
ViDiT-Q	4/8	0.1809	0.9989	60.62	49.38	0.153

FP16

ViDiT-Q

Q-DiT

PTQ4DiT

Main Results: T2I Metrics

> Metrics:

• FID | CLIP-score | ImageReward

Method	Bit-width (W/A)	FID(↓)	CLIP(↑)	IR(↑)
-	16/16	73.34	0.258	0.901
Q-Diffusion	8/8	96.54	0.239	0.186
	4/8	91.95	0.228	-0.224
Q-DiT	8/8	73.60	0.256	0.854
	4/8	475.8	0.127	-2.277
PTQ4DiT	8/8	127.9	0.217	-1.216
	4/8	171.9	0.177	-2.064
ViDiT-Q	8/8	75.61	0.259	0.917
	4/8	74.33	0.257	0.887

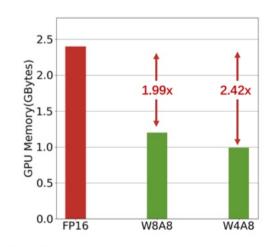
ViDiT-Q

Q-DiT PTQ4DiT

Main Results: Hardware Efficiency

- > We implement the Efficient CUDA Kernel for actual hardware resource measurement on Nvidia A100.
 - (Fused Kernel Implemented)

Bit-width (W/A)	Memory Opt.	Latency Opt.
16/16	1.00×	1.00×
8/8 (naive)	$1.99 \times$	$1.74 \times$
8/8 (ours)	$1.99 \times$	$1.71 \times$
4/8 (ours)	$2.42 \times$	$1.38 \times$



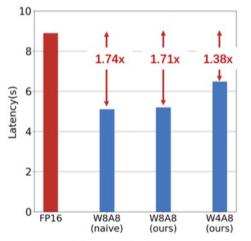


Figure 7: The illustration of ViDiT-Q's hardware resource savings. The table and figures present memory savings and end-to-end latency speedup of ViDiT-Q and naive quantization scheme.

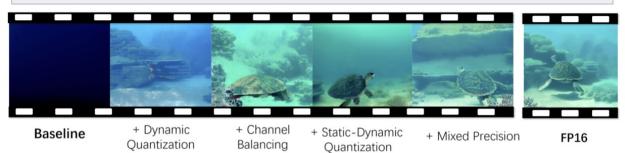
Analysis: Ablation Studies

➤ Ablation Studies

Methods			Bit-width	CLIPSIM	CLIP-Temp	VQA-	VQA-	Δ Flow
Quant Params	Channel Balance	Mixed Precision	(W/A)			Aesthetic	Technical	Score.
_	-	-	16/16	0.180	0.998	64.198	51.904	-
Static & Tensor-wise	-	-	4/8	0.201	0.997	0.178	0.086	0.603
Dynamic & Token-wise	-	-	4/8	0.196	0.998	32.217	10.994	0.109
Dynamic & Token-wise	Scaling-based	-	4/8	0.191	0.999	31.963	22.847	0.415
Dynamic & Token-wise	Rotation-based	-	4/8	0.181	0.999	47.356	33.128	0.326
Dynamic & Token-wise	Static-Dynamic	-	4/8	0.181	0.999	60.216	42.257	0.151
Dynamic & Token-wise	Static-Dynamic	MSE-based	4/8	0.179	0.999	53.335	38.729	0.258
Dynamic & Token-wise	Static-Dynamic	Metric Decoupled	4/8	0.199	0.999	60.616	49.383	0.334

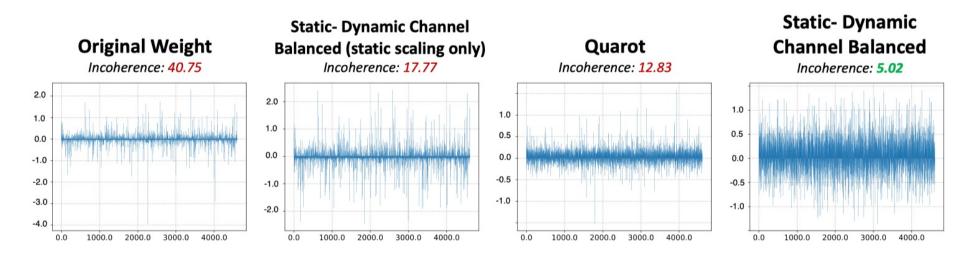
Generated Videos Example of Ablation Studies: STDiT W4A8

"A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle, with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the right side of the frame. The coral reef, teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle's journey. Several small fish, darting around the turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a comprehensive view of the turtle's surroundings. The overall style of the video is calm and peaceful, capturing the beauty and tranquility of the underwater world."



Analysis: Ablation Studies

Visualization of Channel Balancing



Thank you!

Tianchen Zhao suozhang1998@gmail.com

Project Page: Open-sourced Code & CUDA Kernels (Update Soon)