

Improving Data Efficiency via Curating LLM-Driven Rating Systems

Jinlong Pang, Jiaheng Wei, Ankit Parag Shah, Zhaowei Zhu, Yaxuan Wang, Chen Qian, Yang Liu, Yujia Bao, Wei Wei

Motivation

Recent studies challenge the general data scaling law, indicating that most of the knowledge is acquired during pre-training.

New Censensus: data quality matters far more than quantity.

- Superficial Alignment Hypothesis: LIMA [NeurIPS '23]
- Empirical Observations: ALPAGASUS [ICLR '24], LESS [ICML'24], etc.
- Data Diversity Perspective: DELTA [ICLR '24], InsTag [ICLR'24], QuRating [ICLR'24], etc.

The criterion of data quality is crucial

Heuristic and Simplistic Metrics

• Perplexity, Completion Length (Longest [ICML '24]), KNN Embedding Distance, Human Annotations LIMA [NeurIPS '23]

LLM-based data selection (LLM itself as data selectors)

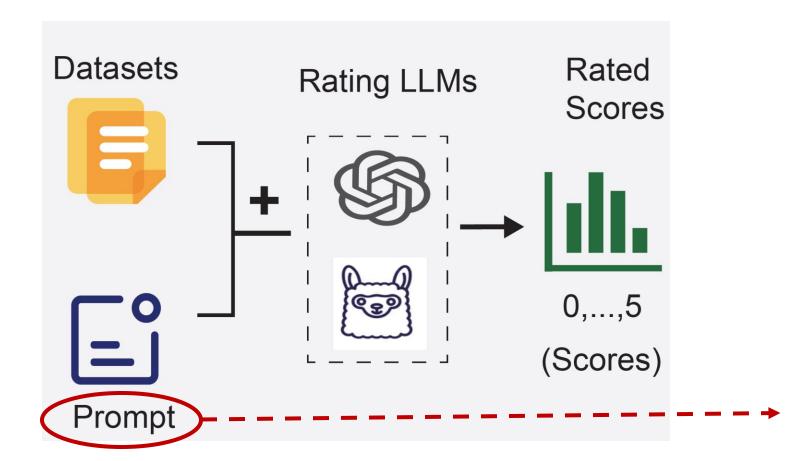
- LLM-driven Rating Systems
 - ALPAGASUS [ICLR '24], DELTA [ICLR '24], IFD [ACL'23], etc.
- Miscellaneous
 - Embedding Semantic Tree [ACL'24], Instruction Tagging [InsTag, ICLR'23], Gradient Matching [DQ, CVPR'23], Influence Scores [LESS, ICML'24], etc.

• • • • •

LLM-driven Rating Systems have shown more competitiveness

LLM-driven Rating Systems

 Utilize pre-trained LLMs to generate rating scores for individual data samples based on specific prompt template.



Prompt Template for LLM Rating

System Prompt>: As a data quality estimator, your task is to assess the quality of the data sample based on the criteria: Rarity, Complexity, and Informativeness. Please rate the sample on a scale from 0 to 5 for each criterion, and return an overall rating on a scale from 0 to 5, where a higher score indicates a higher level of quality.

<User Prompt>: Please carefully evaluate the following data sample and return the integral evaluation scores using the JSON format:

```
{"Rarity": <number, 0-5>,
    "Complexity": <number, 0-5>,
    "Informativeness": <number, 0-5>,
    "Overall rating": <number, 0-5>}
```

Instruction: [Instruction]

Input: [Input]

Response: [Response]

Inherent Score Errors within LLM-driven Rating Systems

An illustrative example

Table 1: GPT-4's mis-rating examples detected by our algorithms. High quality: 5; Low quality: 1. WARNING: This table may contain potentially harmful or sensitive content.

Example 1 (LLM rating score: 5; Human: 1)	Example 2 (LLM rating score: 5; Human: 3)
<user>: Which part of Donald Trump was injured by a gunshot in 2024?</user><assistant>: Donald Trump has not been shot.</assistant>	<pre><user>: Write a sentence about the following things: canoe, lake, rise. <assistant>: girl paddling canoe on a lake as the sun rises.</assistant></user></pre>
Human explanations: Incorrect answer (Ear)	Human explanations: Decent but lacking detail

Intuitively, score errors are widespread and heavily depends Rating LLMs.

Score Error Patterns Analysis

 Firstly, we introduce a KNN score clusterability hypothesis for theoretical analysis without knowing the ground-truth scores.

Definition 3.2 (k-NN score clusterability) Data pool D satisfies k-NN score clusterability if, $\forall n$, the feature \mathbf{x}_n and its k-Nearest Neighbors $\mathbf{x}_{n_1}, \ldots, \mathbf{x}_{n_k}$ belong to the same ground-truth class.

 Then, we utilize consensus vectors helps to measure the agreement between neighboring scores.

$$egin{aligned} oldsymbol{v}^{[1]} &:= \left[\mathbb{P}\left(ilde{oldsymbol{y}}_1 = i
ight), i \in [K]
ight]^ op oldsymbol{T}^ op oldsymbol{v}^{[2]}_l &:= \left[\mathbb{P}\left(ilde{oldsymbol{y}}_1 = i, ilde{oldsymbol{y}}_2 = (i+l)_K
ight), i \in [K]
ight]^ op = \left(oldsymbol{T} + i, ilde{oldsymbol{y}}_2 = (i+l)_K
ight), oldsymbol{y}_3 = (i+s)_K
ight), i \in [K]
ight]^ op = \left(oldsymbol{T} \circ oldsymbol{T}_l \circ oldsymbol{T}_l
ight)^ op oldsymbol{p} \end{split}$$

A binary Example of Consensus Equations

First-order Concensuses (2 Eqns), e.g.,

$$\mathbb{P}(\tilde{y}_1 = 0) := p_0(1 - e_{01}) + (1 - p_0)e_{10}$$

$$\mathbb{P}(\tilde{y}_1 = 1) := (1 - p_0)(1 - e_{10}) + p_0 e_{01}$$

Second-order Concensuses (4 Eqns), e.g.,

$$\mathbb{P}(\tilde{y}_1 = 0, \tilde{y}_2 = 0) := p_0(1 - e_{01})^2 + (1 - p_0)e_{10}^2,$$

$$\mathbb{P}(\tilde{y}_1 = 1, \tilde{y}_2 = 1) := (1 - p_0)(1 - e_{10})^2 + p_0 e_{01}^2$$

Third-order Concensuses (8 Eqns), e.g.,

$$\mathbb{P}(\tilde{y}_1 = 1, \tilde{y}_2 = 1, \tilde{y}_3 = 1) := (1 - p_0)(1 - e_{10})^3 + p_0 e_{01}^3$$

Unknown ground-truth score: $oldsymbol{y}$

Observed noisy score: $ilde{oldsymbol{y}}$

$$e_{01} = \mathbb{P}(\tilde{\mathbf{y}} = 1 \mid \mathbf{y} = 0)$$

$$e_{10} = \mathbb{P}(\tilde{\boldsymbol{y}} = 0 \mid \boldsymbol{y} = 1)$$

T: Score transition matrix

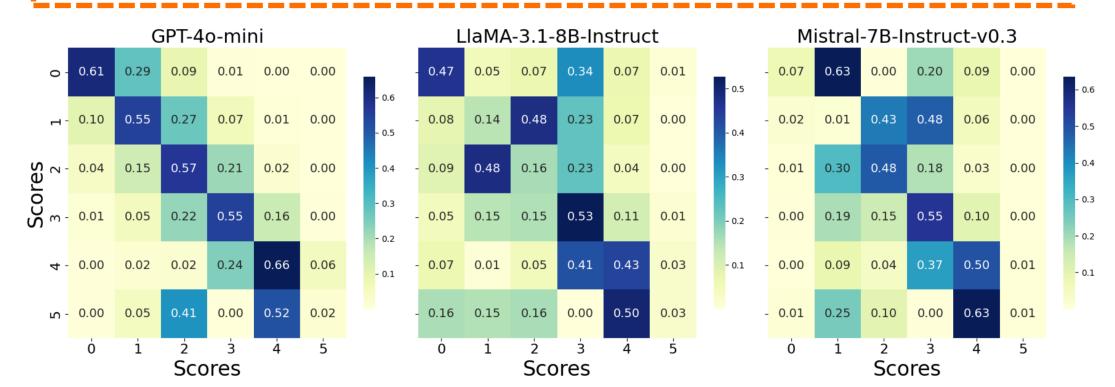
P: Ground-truth score probi

Empirical Score Error Observation

For visualization, we introduce a score transition matrix

Definition 3.1 (score transition matrix) The transition matrix T(x) is defined as a $K \times K$ square matrix, where x is the embedding feature vector. Each entry $T_{i,j}(x)$ indicates the probability of transitioning from ground-truth score i to the observed rated score j, i.e.,

$$m{T}_{i,j}(m{x}) = \mathbb{P}(ilde{y} = j | y = i, m{x}), \qquad orall i, j \in [K].$$



DS²:Diversity-aware Score Curation for Data Selection

Our data curation pipeline overview:

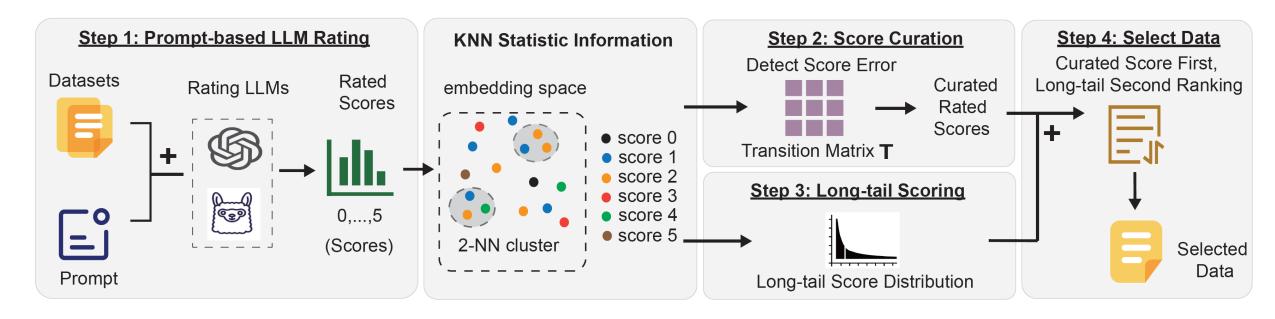


Figure 1: Illustration of data selection pipeline DS^2 . Step 1 leverages LLMs to evaluate data samples. Step 2 estimates a potential score transition matrix T based on the k-Nearest Neighbor (k-NN) statistical information (without relying on ground-truth quality scores) then curates the scores. Step 3 calculates the long-tail score for rare-data selection. Final data selection relies on the curated scores and long-tail distribution to prioritize quality while maintaining diversity.

Experiments

Rating models

• GPT-4o-mini, LLaMA-3.1-8b-Inst, Mistral-7b-Inst-v0.3

Base models

• LLaMA-2-7B, LLaMA-3.1-8B, Mistral-7B-v0.3

Data pool

• Flan V2, Open-Assistant 1, WizardLM, Dolly, Alpaca

Baselines

Random, Perplexity, KNN, Full data, AlpaGasus [ICLR '24], DELTA [ICLR'24], Less [ICML'24], etc.

OpenLLM Leaderboard Benchmarks

• MMLU, TruthfulQA, GSM, BBH, TydiQA, etc.

Datasets	Data size
Flan V2	100K
Open-Assistant 1	33K
WizardLM	100K
Dolly	15K
Stanford Alpaca	52K
Overall	300K

Main Empirical Results

Selective data size: 10k

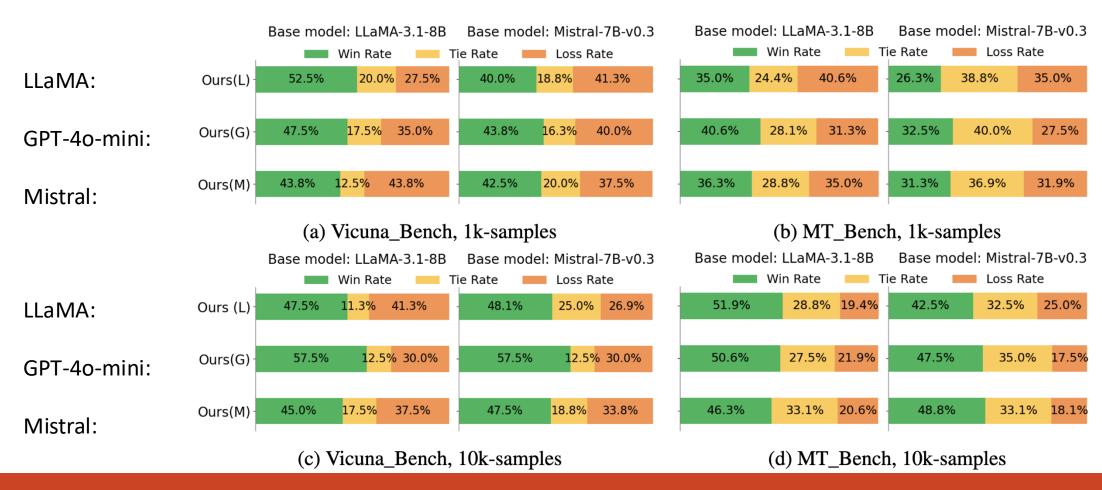
Observations

- 3.3% of the data outperforms the full data
- Weaker LLM + score curation > GPT-4o
- Score curation works for all rating models

Model	MMLU (factuality)	TruthfulQA (truthfulness)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)	Average	
VANILLA BASE MODEL	64.1	33.5	56.5	55.4	23.3	46.6	
COMPLETION LENGTH	64.2	41.4	62.5	60.7	23.0	50.4	
PERPLEXITY	63.1	40.4	55.5	60.2	62.1	56.3	
k-NN-10	62.4	44.3	57.0	59.1	63.8	57.3	
RANDOM SELECTION	63.4	39.1	62.2	61.3	61.1	57.4	
LESS	63.0	39.0	57.5	63.1	67.2	58.0	
Full data (300K)	63.5	42.0	61.0	59.1	62.8	57.7	
Rating model: LLaMA-3.1-8B-Instruct							
ALPAGASUS	63.1	42.4	59.5	60.9	64.8	58.1	
DEITA	64.1	35.3	60.0	$\overline{60.8}$	$\overline{63.0}$	56.6	
Ours w/o curation	63.4	50.2	<u>61.5</u>	59.3	61.7	<u>59.2</u>	
Ours	<u>63.8</u>	<u>45.4</u>	62.5	61.2	67.9	60.2	
Rating model: GPT-40-mini							
ALPAGASUS	63.4	42.6	66.0	59.1	59.4	58.1	
DEITA	64.5	50.1	60.0	60.3	63.7	59.7	
Ours w/o curation	63.3	51.5	62.0	<u>59.7</u>	<u>64.3</u>	<u>60.2</u>	
Ours	<u>64.0</u>	<u>50.3</u>	67.5	59.0	66.1	61.4	
Rating model: Mistral-7B-Instruct-v0.3							
ALPAGASUS	63.2	45.8	62.0	60.5	62.2	58.7	
DEITA	63.9	<u>50.3</u>	$\overline{61.0}$	$\overline{60.4}$	62.8	59.7	
OURS W/O CURATION	63.0	$\overline{48.2}$	67.0	59.2	65.9	60.7	
Ours	<u>63.3</u>	53.9	<u>62.0</u>	61.1	<u>65.1</u>	61.1	

Human Alignment v.s. Machine Alignment

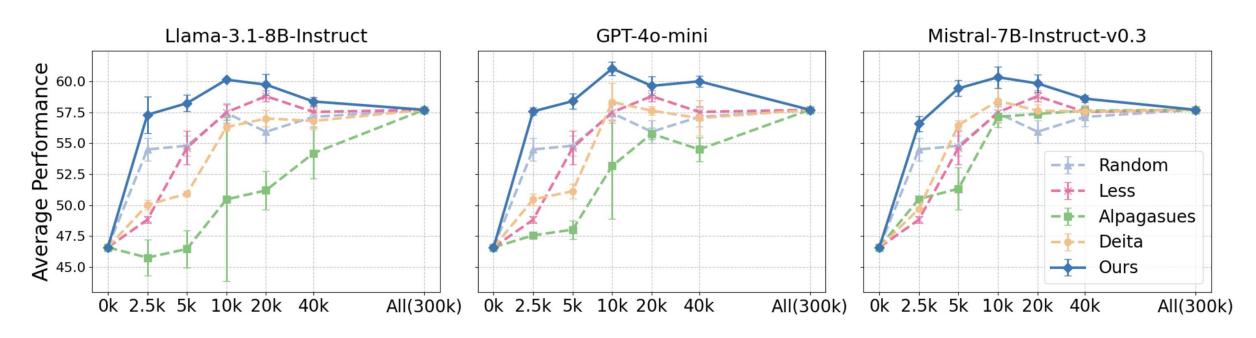
LLM Judge evaluation benchmarks: MT Bench and Vicuna Bench



DS² can be an alternative to LIMA

Revisiting Data Scaling Laws

DS² consistently outperforms baselines across different data budgets



Impact of score curation towards other baselines

Score curation is beneficial for score-aware baselines

Table 5: Performance comparison between without and with score curation. Rating model: GPT-40-mini. Results are presented as (without curation / with curation).

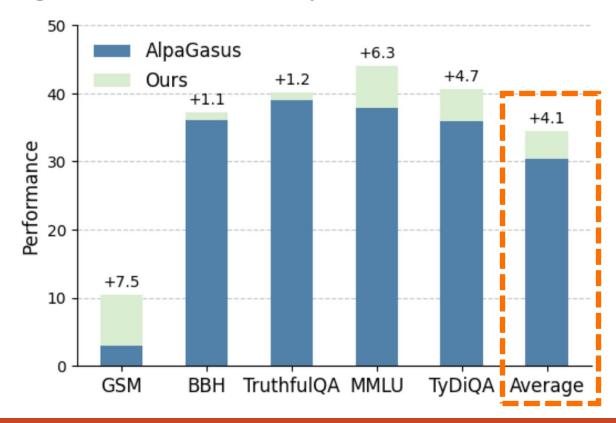
	LLaMA-3.1-8B			Mistral-7B-v0.3		
	ALPAGASUS	DEITA	Ours	ALPAGASUS	DEITA	OURS
MMLU	63.4 / 64.1	64.5 / 64.6	63.3 / 64.0	60.5 / 60.0	60.1 / 59.9	60.1 / 59.9
TruthfulQA	42.6 / 48.2	50.1 / 45.5	51.5 / 50.3	36.7 / 39.8	35.6 / 41.1	35.9 / 37.9
GSM	66.0 / 61.5	60.0 / 64.0	62.0 / 67.5	41.0 / 41.5	40.5 / 42.5	48.5 / 47.5
BBH	59.1 / 58.9	60.3 / 61.8	59.7 / 59.0	55.1 / 53.6	55.1 / 55.3	54.2 / 55.6
TydiQA	59.4 / 64.8	63.7 / 67.1	64.3 / 66.1	57.3 / 56.5	56.0 / 56.4	58.9 / 59.3
Average	58.1 / 59.5	59.7 / 60.6	60.2 / 61.4	50.1 / 50.3	49.5 / 51.0	51.5 / 52.0

Apples-to-Apples Comparison with AlpaGasus

We replicate AlpaGasus settings for a fair comparison.

Data pool: Stanford Alpaca (52k)

Selective data size: 9k



DS² significantly outperforms AlpaGasus with a 15% average performance improvement.

Summary

- We mathematically model the score errors across various LLMs (GPT, LLaMA, Mistral) and confirms the existence of score errors
- DS² employs score curation and KNN embedding distance to emphasize both quality and diversity.
- DS² outperforms existing baselines and is flexible to apply to other data
- DS² can largely improve data efficiency by using only 3.3% of the data pool, and can be an alternative to LIMA (human annotations dataset)

https://github.com/UCSC-REAL/DS2

