Accelerating Neural Network Training

An Analysis of the ALGOPERF Competition

ICLR 2025

Priya Kasimbeg, Frank Schneider, R. Eschenhagen, J. Bae, C. Shama Sastry, M. Saroufim, B. Feng, L. Wright, E. Z. Yang, Z. Nado, S. Medapati, P. Hennig, M. Rabbat, G. E. Dahl

The ALGOPERF Competition

A (very) short motivation & summary

Neural network training is notoriously tricky.

Choosing the **optimizer** (SGD, ADAM, NADAMW, K-FAC, LAMB, etc.?), the **learning rate** (1e - 3? 3e - 4? Tune it?), the learning rate **schedule** (cosine, cyclic warmup-stable-decay, etc.?), etc.

1

The ALGOPERF Competition

A (very) short motivation & summary

- ► Neural network training is notoriously tricky.
 - Choosing the **optimizer** (SGD, ADAM, NADAMW, K-FAC, LAMB, etc.?), the **learning rate** (1e 3? 3e 4? Tune it?), the learning rate **schedule** (cosine, cyclic warmup-stable-decay, etc.?), etc.
- ► The ALGOPERF benchmark.

Measure speedups due to **algorithmic improvements**, but fix model, hardware, software, tuning protocols, etc.

1

The ALGOPERF Competition

A (very) short motivation & summary

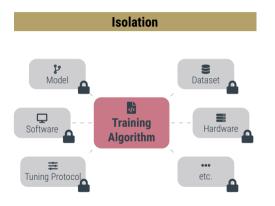
- ► Neural network training is notoriously tricky.
 - Choosing the **optimizer** (SGD, ADAM, NADAMW, K-FAC, LAMB, etc.?), the **learning rate** (1e 3? 3e 4? Tune it?), the learning rate **schedule** (cosine, cyclic warmup-stable-decay, etc.?), etc.
- ► The AlgoPerf benchmark.

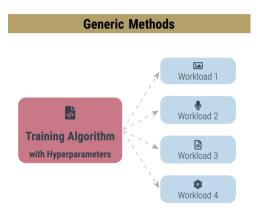
 Measure speedups due to algorithmic improvements, but fix model, hardware, software, tuning protocols, etc.
- **▶** Competition results.
 - Significant training speedups by the winners **DISTRIBUTED SHAMPOO** (30%) & **SCHEDULE FREE ADAMW** (10%) over a well-tuned baseline.

1

ML Commons

Our two key principles





Isolating algorithmic improvements

- update_params
 Typically involves optimizers such as SGD, ADAM, or custom methods.
- init_optimizer_state
 Define a method's hyperparameters, e.g. the learning rate schedules.
- hyperparameter_search_space In the external tuning ruleset, a workload-agnostic hyperparameter tuning space.
 - get_batch_size
 Batch sizes for each workload, e.g. the largest batch size fitting in memory.
- ► data_selection
 How to construct data batches.

Isolating algorithmic improvements

- update_params Typically involves optimizers such as SGD, ADAM, or custom methods.
- init_optimizer_state
 Define a method's hyperparameters, e.g. the learning rate schedules.
- hyperparameter_search_space In the external tuning ruleset, a workload-agnostic hyperparameter tuning space.
 - get_batch_size
 Batch sizes for each workload, e.g. the largest batch size fitting in memory.
- ► data_selection
 How to construct data batches.

Isolating algorithmic improvements

- update_params
 Typically involves optimizers such as SGD, ADAM, or custom methods.
- init_optimizer_state
 Define a method's hyperparameters, e.g. the learning rate schedules.
- hyperparameter_search_space In the external tuning ruleset, a workload-agnostic hyperparameter tuning space.
 - get_batch_size
 Batch sizes for each workload, e.q. the largest batch size fitting in memory.
- ► data_selection
 How to construct data batches.

Isolating algorithmic improvements

- update_params
 Typically involves optimizers such as SGD, ADAM, or custom methods.
- init_optimizer_state
 Define a method's hyperparameters, e.g. the learning rate schedules.
- hyperparameter_search_space In the external tuning ruleset, a workload-agnostic hyperparameter tuning space.
 - get_batch_size
 Batch sizes for each workload, e.g. the largest batch size fitting in memory.
- data_selection How to construct data batches.

Training real-world deep learning workloads as fast as possible

Task	Dataset	Model	Metric	Validation Target	Maximum Runtime
Clickthrough rate prediction	CRITEO 1TB	DLRMsmall	Cross Entropy	0.123735	7703
MRI reconstruction	FASTMRI	U-NET	SSIM	0.7344	8859
Image classification	IMAGENET	RESNET-50 VIT	Error Rate Error Rate	0.22569 0.22691	63,008 77,520
Speech recognition	LIBRISPEECH	CONFORMER DEEPSPEECH	Word Error Rate Word Error Rate	0.085884 0.119936	61,068 55,506
Molecular property prediction	OGBG	GNN	mAP	0.28098	18,477
Translation	WMT	TRANSFORMER	BLEU	30.8491	48,151

ML Commons

Two distinct rulesets simulating different use cases

External Tuning Ruleset	Self-Tuning Ruleset
Parallel tuning across 5 tuning trials	No additional tuning, i.e. a single trial
Fastest trial counts for scoring	All computations are "on-the-clock"
Submissions must define a workload-agnostic search space	Any required workload-adaptation must be part of the method
Simulates training with parallel ressources, e.g. multiple devices	Simulates (sequential) training using a single device
Examples: Learning rate tuning using a log grid or a list of five hyperparameter configurations	Examples: ADAM with default hyperparameters or inner-loop turing during the run

ML Commons

Two distinct rulesets simulating different use cases

External Tuning Ruleset	Self-Tuning Ruleset
Parallel tuning across 5 tuning trials	No additional tuning, i.e. a single trial
Fastest trial counts for scoring	All computations are "on-the-clock"
Submissions must define a workload-agnostic search space	Any required workload-adaptation must be part of the method
Simulates training with parallel ressources, e.g. multiple devices	Simulates (sequential) training using a single device
Examples: Learning rate tuning using a log grid or a list of five hyperparameter configurations	Examples: ADAM with default hyperparameters or inner-loop turing during the run

ML Commons

4.0

Aggregate scoring using performance profiles

- Plot Performance Profiles (right).
- Integrate Performance Profiles for a Benchmark Score relative to all submissions.
- ▶ Benchmark score is [0, 1] with 1 meaning fastest submission in each workload.

Norkloads trained within that factor slower than fastest submission

ML Commons

The Self-Tuning Ruleset

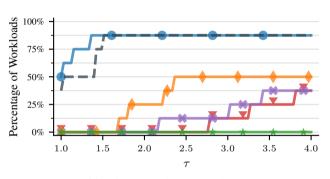
Submission	Team	Line	Score
SCHEDULE FREE ADAMW	Defazio, Yang, Mishchenko	-	0.8542
BASELINE			0.8194
NADAMW SEQUENTIAL	Dahl, Medapati, et al.	+	0.3308
SINV6 75	Moudgil		0.1420
SINV6	Moudgil		0.0903
AdamG	Pang		0

(a) Self-tuning leaderboard

ML Commons

The Self-Tuning Ruleset

Submission	Team	Line	Score
SCHEDULE FREE ADAMW	Defazio, Yang, Mishchenko	-	0.8542
BASELINE			0.8194
NADAMW SEQUENTIAL	Dahl, Medapati, et al.	+	0.3308
SINV6 75	Moudgil		0.1420
SINV6	Moudgil		0.0903
AdamG	Pang	\rightarrow	0

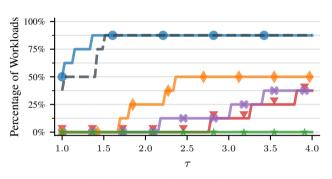


(a) Self-tuning leaderboard

(b) Self-tuning performance profiles

The Self-Tuning Ruleset

Submission	Team	Line	Score
SCHEDULE FREE ADAMW	Defazio, Yang, Mishchenko	-	0.8542
BASELINE			0.8194
NadamW Sequential	Dahl, Medapati, et al.	+	0.3308
SINV6 75	Moudgil		0.1420
SINV6	Moudgil		0.0903
AdamG	Pang	\rightarrow	0



(a) Self-tuning leaderboard

(b) Self-tuning performance profiles

SCHEDULE FREE ADAMW is on average $\approx 10\%$ faster than the self-tuning BASELINE.

ML Commons

The External-Tuning Ruleset

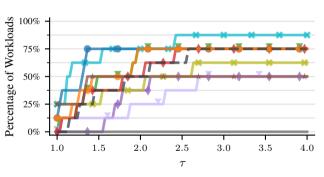
Submission	Team	Line	Score
DISTRIBUTED SHAMPOO	Shi, et al.		0.7784
SCHEDULE FREE ADAMW	Defazio, et al.	-	0.7077
Generalized Adam	Dahl, et al.	-	0.6383
CYCLIC LR	Ajroldi, et al.		0.6301
NADAMP	Dahl, et al.	+	0.5909
BASELINE			0.5707
Amos	Tian		0.4918
CASPR	Duvvuri, et al.	_	0.4722
LAWA QUEUE	Ajroldi, et al.	\rightarrow	0.3699
LAWA EMA	Ajroldi, et al.	_	0.3384
S.F. PRODIGY	Defazio, et al.	_	0

(a) External tuning leaderboard

ML • Commons

The External-Tuning Ruleset

	_		
Submission	Team	Line	Score
DISTRIBUTED SHAMPOO	Shi, et al.		0.7784
SCHEDULE FREE ADAMW	Defazio, et al.	-	0.7077
Generalized Adam	Dahl, et al.	•	0.6383
CYCLIC LR	Ajroldi, et al.		0.6301
NADAMP	Dahl, et al.	-	0.5909
BASELINE			0.5707
Amos	Tian		0.4918
CASPR	Duvvuri, et al.	_	0.4722
LAWA QUEUE	Ajroldi, et al.	\rightarrow	0.3699
LAWA EMA S.F. Prodigy	Ajroldi, et al. Defazio, et al.		0.3384 0



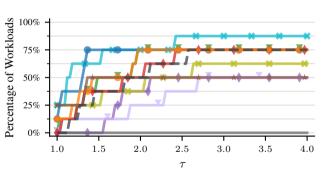
(b) External tuning performance profiles

ML Commons

The External-Tuning Ruleset

Submission	Team	Line	Score
DISTRIBUTED SHAMPOO	Shi, et al.		0.7784
SCHEDULE FREE ADAMW	Defazio, et al.	-	0.7077
Generalized Adam	Dahl, et al.	•	0.6383
CYCLIC LR	Ajroldi, et al.		0.6301
NADAMP	Dahl, et al.	-	0.5909
BASELINE			0.5707
Amos	Tian		0.4918
CASPR	Duvvuri, et al.	_	0.4722
LAWA QUEUE	Ajroldi, et al.	\rightarrow	0.3699
LAWA EMA S.F. Prodigy	Ajroldi, et al. Defazio, et al.		0.3384 0

(a) External tuning leaderboard



(b) **External tuning** performance profiles

Robustness is a major aspect of training methods

	CRITEO 1TB	FASTMRI	RESNET	VIT	Conformer	DEEPSPEECH	OGBG	WMT
DISTRIBUTED SHAMPOO	0.65	0.15	inf	0.43	0.78	0.62	0.18	0.80
SCHEDULE FREE ADAMW	0.67	0.13	inf	0.57	0.92	0.78	0.29 [‡]	0.33
GENERALIZED ADAM	0.83	0.18	0.97	0.84	inf	0.68	0.31 [‡]	0.63
CYCLIC LR	0.67	0.25	inf	0.81	0.94	0.70	0.38^{\ddagger}	0.49
NADAMP	0.80	0.22	inf	0.88	0.94	0.60	0.43^{\ddagger}	0.80
BASELINE	0.94	0.23	inf	0.91	0.90	0.65	0.42^{\ddagger}	0.86
Amos	inf	0.33	inf	0.65	0.71	0.57	0.60*	0.68
CASPR ADAPTIVE	NaN	0.13	inf	0.58	inf	0.75	0.12	0.67^{\ddagger}
LAWA QUEUE	inf	0.22	inf	0.66	inf	inf	0.25	0.56
LAWA EMA	0.69	0.29	inf	0.80	inf	inf	0.57*	0.89
SCHEDULE FREE PRODIGY	NaN	0.21 [‡]	inf	inf	inf	inf	0.61*	inf

No single submission dominates across all workloads.

Summary

Results of the Inaugural ALGOPERF Competition

- ► SHAMPOO & SCHEDULE-FREE are new SOTA training algorithms.
 - > 30% and 10% faster training vs. the baseline!
- ► Even more potential for future improvements.
 - ► Help us try out SOAP, MUON, ADEMAMIX, ...!
- ▶ The benchmark needs to evolve alongside the submissions.
 - ► Help us shape the next iteration of ALGOPERF!

...and so many more!

Paper: openreview.net/forum?id=CtM5xjRSfm

Blog Post: mlcommons.org/2024/08/mlc-algoperf-benchmark-competition

Benchmark Code: github.com/mlcommons/algorithmic-efficiency

Leaderboard Updates: Bluesky or X (@algoperf)