When Narrower is Better

The Narrow Width Limit of Bayesian Parallel Branching Neural Networks

Problem Setup

Branching Neural Networks

 \bullet Architecture: Sum of L independent branches

$$f(x;\Theta) = \sum_{l} \frac{1}{\sqrt{NL}} a_l^{\top} \phi_l(x; W_l)$$

• Examples: **GCN:** Branch l uses convolutions of graph A^l ; **Residual-MLP:** ϕ_0 linear, ϕ_1 ReLU.

Bayesian Regression

- Posterior $P(\Theta|Y) \propto \exp\left(-\frac{1}{2T}\sum_{\mu=1}^{P}(f^{\mu}-y^{\mu})^{2}-\frac{1}{2\sigma_{w}^{2}}\Theta^{T}\Theta\right)$.
- Likelihood (Loss) + Prior (L_2 Reg. σ_w^2). T: Temperature.
- Regime: Overparameterized $P, N \to \infty$, $\alpha = P/N$ finite.
- Equilibrium ≈ an ensemble of trained NNs over random initializations

Method: Kernel Renormalization

Partition function $Z = \int e^{-E(\Theta)/T} d\Theta$ contains all statistics. Integrating out weights a_l , then W_l leads to an effective theory described by order parameters u_l :

- GP Limit ($\alpha \to 0$, infinite width):
 - $-u_l \rightarrow \sigma_w^2$ (Symmetric branches).
 - Kernel $K_{GP} = \sum_{l} \frac{\sigma_w^2}{L} K_l$ (Task-independent, NNGP).
- Finite α (Feature Learning / Narrow Width):
 - u_l depend on data Y via saddle-point equations: $N(1 u_l/\sigma_w^2) = -r_l + \text{Tr}_l$.
 - Kernel $K = \sum_{l} \frac{u_{l}}{L} K_{l}$ is **renormalized** by data.
 - Leads to **symmetry breaking** (u_l differ based on relevance).

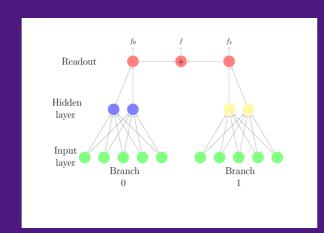
Main Theorem: The Narrow Width Limit

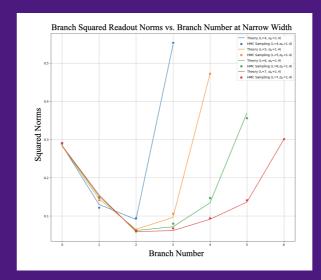
Student network (width N, prior σ_w^2) learns from the teacher network (branch norms $\beta_l^2 \sigma_*^2$). Student's order parameters u_l converge to match teacher's scaled norms at the narrow limit $(P/N = \alpha \to \infty)$:

$$u_l \sigma_w^2 \xrightarrow{\alpha \to \infty} \beta_l^2 \sigma_*^2$$

$$(\implies \langle ||a_l||^2 \rangle \sigma_w^2 / N \to ||a_l^*||^2 \rangle \sigma_*^2 / N).$$

Heard of the infinite width limit? We discovered the narrow width limit, where the narrower the better. We prove a general theorem and demonstrate for GCN and residual-MLP.



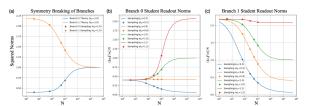


FIRST ZECHEN ZHANG
SECOND HAIM SOMPOLINSKY

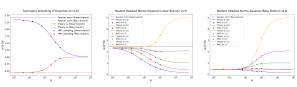
Main Results

Symmetry Breaking & Robust Learning

GCN

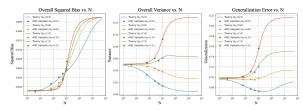


Residual-MLP

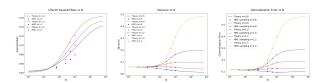


Generalization vs. Width

GCN

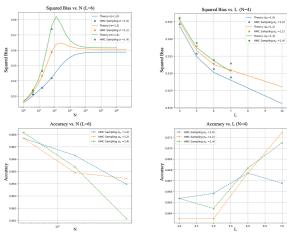


Residual-MLP



Real Dataset Results (Cora & Cifar10)

Cora



Cifar 10

