

Leave-One-Out Stable Conformal Prediction

Kiljae Lee, Yuan Zhang

The Ohio State University

Why Uncertainty Quantification?

In many machine learning applications, point predictions dominate.

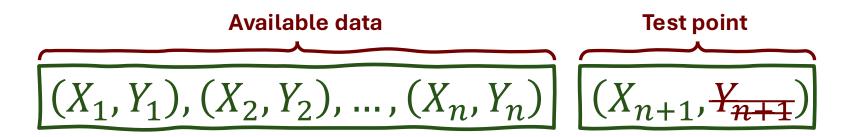
Medical AI: "This tumor is malignant"

Autonomous Driving: "A pedestrian is detected"

But how it sure?

Uncertainty quantification is not optional. It is critical.

Valid Prediction Set



Our goal: Construct a valid set $C(X_{n+1})$ that contains Y_{n+1} with high probability without any distribution assumption.

Definition (Validity)

A set $C_{\alpha}(X_{n+1})$ is **valid** at a given level of α if $P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha$ holds.

Conformal Prediction

- Conformal Prediction (CP) provides valid prediction sets, relying solely on the *i.i.d.* assumption of data.
- A core concept, nonconformity scores, quantify how well a given label Y_{n+1} conforms to a trained model.

(Examples)

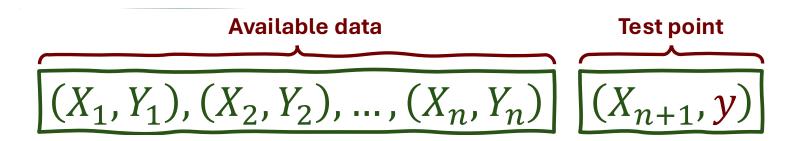
Regression:
$$S(Y_i, \hat{f}(X_i)) = |Y_i - \hat{f}(X_i)|$$

Classification: $S(Y_i, \hat{p}(X_i)) = 1 - \hat{p}_{Y_i}(X_i)$

(WARNING!) *If some data points are favored* in training, the validity breaks.

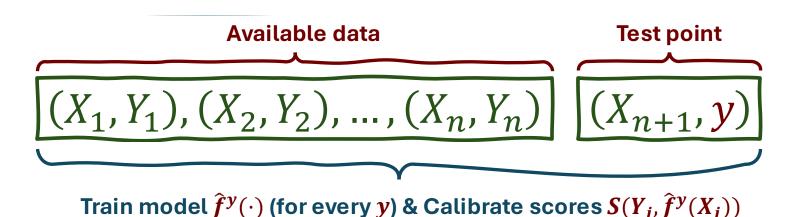
Full CP vs Split CP

There are **two** standard approaches **to** guarantee the equivalence (a.k.a. Exchangeability) across the S_i 's.



Full CP vs Split CP

Full CP (Vovk, 2005) computes nonconformity scores by *fitting a model over all possible guesses* of the test label.

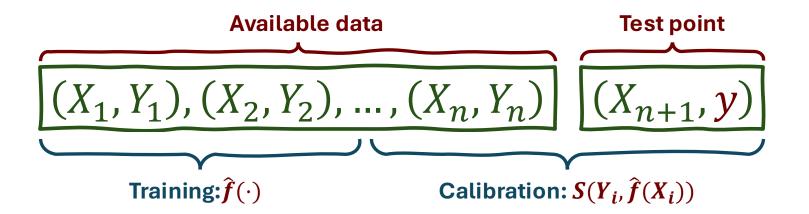


Pros: Allows the *use of entire dataset* for both training & calibration

Cons: Computational burden due to the model retraining

Full CP vs Split CP

Split CP (Papadopoulos et al., 2002) *divides the data* into training and calibration sets.



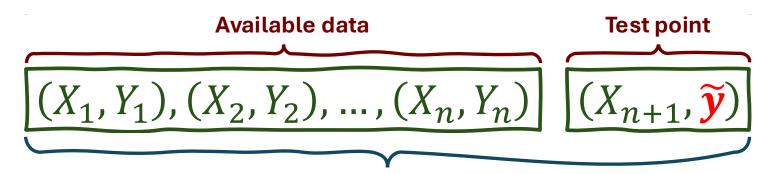
Pros: Only a single model fit is required

Cons: Less data is available for both training &calibration

Trade-off! Statistical Efficiency vs Computational Efficiency

What has been done?

Returning to the Full CP, what if we replace y with an arbitrary guess \tilde{y} ?

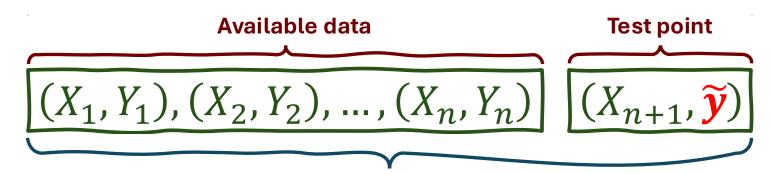


Train model $\hat{f}^{\widetilde{y}}(\cdot)$ & Calibrate scores $S(Y_i, \hat{f}^{\widetilde{y}}(X_i))$: No need to retrain

Ndiaye (2022) proposed **Replace-One Stable CP (RO-StabCP)**: "A single label replacement yields **controllable changes**."

What has been done?

Returning to the Full CP, what if we replace y with an arbitrary guess \tilde{y} ?



Train model $\hat{f}^{\widetilde{y}}(\cdot)$ & Calibrate scores $S(Y_i, \hat{f}^{\widetilde{y}}(X_i))$: No need to retrain

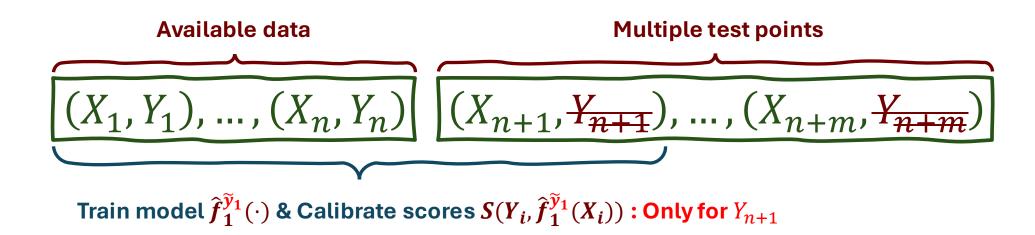
Definition (Algorithmic Stability: Replace-One)

A model \hat{f} is **replace-one stable**, if for all i, there exists τ^{RO} such that

$$\sup_{z,\nu,\tilde{\nu}} \left| S\left(z,\hat{f}^{y}(X_{i})\right) - S\left(z,\hat{f}^{\tilde{y}}(X_{i})\right) \right| < \tau^{RO}.$$

Remaining Issue

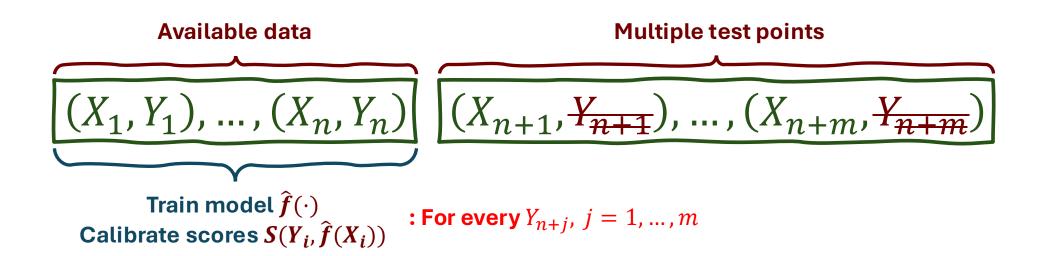
However, in real-world scenarios, we often have *more than one test point*.



In the above case, RO-StabCP requires m model trainings since the model still includes X_{n+j} .

Leave-One-Out Stable CP

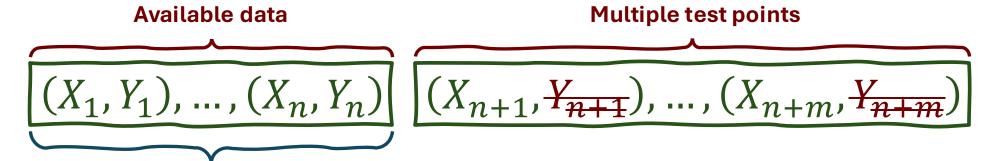
"What if we train a model without any test point information?"



"Excluding a single point still yields controllable changes."

Leave-One-Out Stable CP

"What if we train a model without any test point information?"



Calibrate scores $S(Y_i, \hat{f}(X_i))$: For every $Y_{n+j}, j = 1, ..., m$

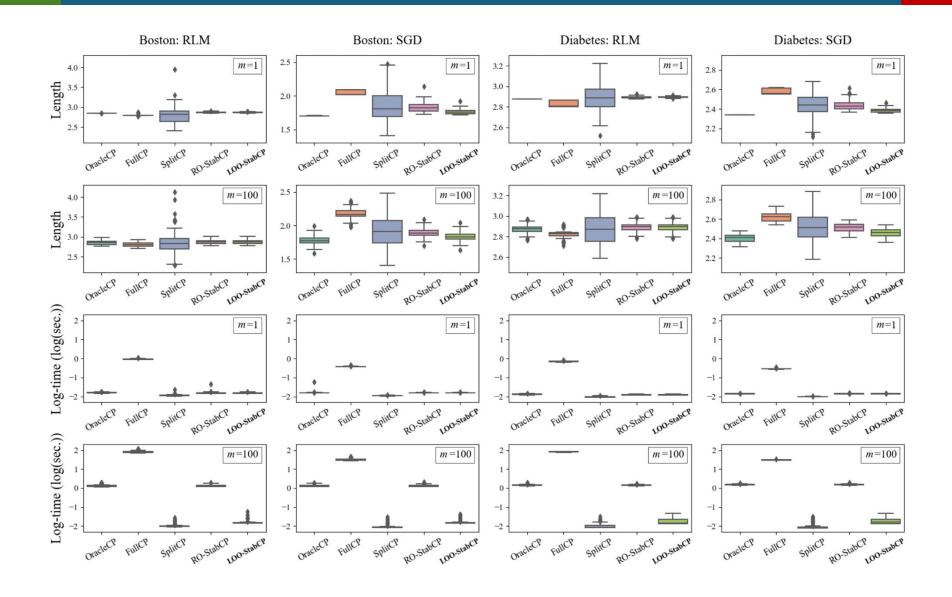
Definition (Algorithmic Stability: Leave-One-Out)

A model \hat{f} is **leave-one-out stable**, if for all i, there exists τ^{LOO} such that $\sup_{z \to z} \left| S\left(z, \hat{f}^{y}(X_{i})\right) - S\left(z, \hat{f}(X_{i})\right) \right| < \tau^{LOO}.$

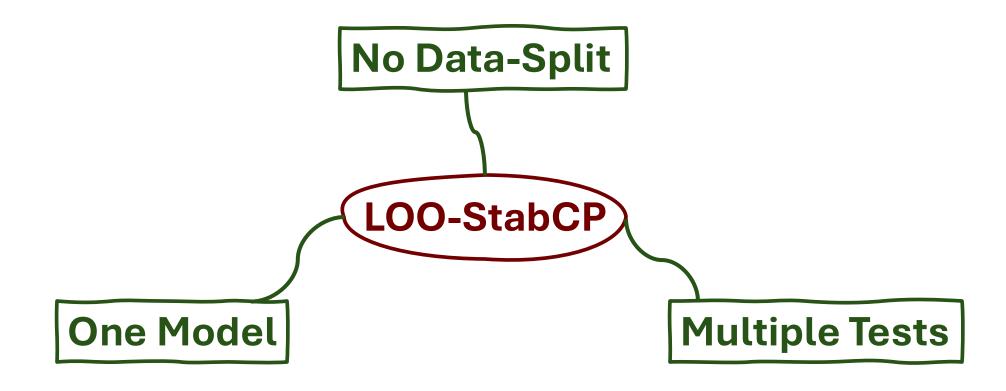
Computational Complexity

Method	# Model Fits	# Prediction Calls	Stable
FullCP	$ \mathcal{Y} \cdot m$	$(n+1)\cdot \mathcal{Y} \cdot m$	\checkmark
SplitCP	1	n + m	X
RO-StabCP	m	$(n+1)\cdot m$	\checkmark
LOO-StabCP	1	n + m	\checkmark

Experimental Results



Summary



"One step closer to real-world deployment."