Differentiable Causal Discovery for Latent Hierarchical Causal Models

Parjanya Prajakta Prashant, Ignavier Ng, Kun Zhang, Biwei Huang

ICLR 2025

Overview

Background

Latent Hierarchical Causal Models

Identifiability

Intuition

Conditions

Jacobian Indicator

Structural Lemmas

Differentiable Causal Discovery Approach

Matching Distributions

Enforcing Structural Constraints

Experiments

Causal Discovery

Images

Conclusion

Latent Hierarchical Causal Models

Latent Hierarchical Causal Models

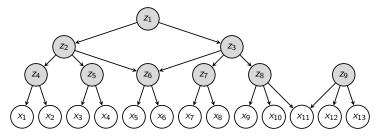


Figure: Example of a Latent Hierarchical Causal Model

Latent Hierarchical Causal Models

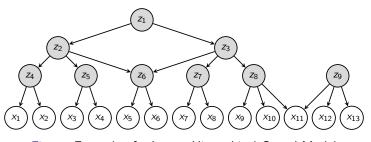
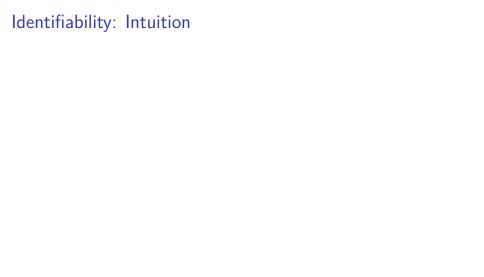


Figure: Example of a Latent Hierarchical Causal Model

Condition 1 (Structural Conditions)

- 1. Each latent variable has at least two pure children.
- 2. For any latent variable $z_i \in \mathbb{Z}$, let $\mathcal{D}_i = \mathsf{De}(z_i) \cap \mathbb{X}$ be the set of measured descendants of z_i where $\mathsf{De}(\cdot)$ denotes the descendants. Then, for all $x_j, x_k \in \mathcal{D}_i$, $d(z_i, x_j) = d(z_i, x_k)$.



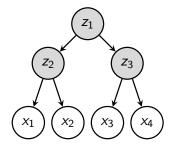


Figure: Latent hierarchical model

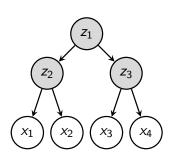


Figure: Latent hierarchical model

 $| \{x_1, x_2\} \perp \{x_3, x_4\} | z_1 |$

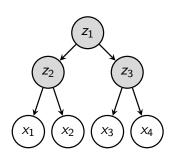


Figure: Latent hierarchical model

- $| \{x_1, x_2\} \perp \{x_3, x_4\} | z_1 |$
- $P(x_1, x_2 \mid x_3, x_4) = \int P(x_1, x_2 \mid z_1) P(z_1 \mid x_3, x_4) dz_1$

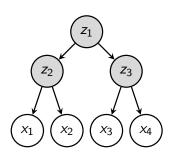


Figure: Latent hierarchical model

- $> \{x_1, x_2\} \perp \{x_3, x_4\} \mid z_1$
- $P(x_1, x_2 \mid x_3, x_4) = \int P(x_1, x_2 \mid z_1) P(z_1 \mid x_3, x_4) dz_1$
- This places a constraint on the measured distribution P(x₁, x₂, x₃, x₄)

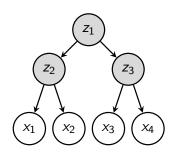


Figure: Latent hierarchical model

- $| \{x_1, x_2\} \perp \{x_3, x_4\} | z_1 |$
- $P(x_1, x_2 \mid x_3, x_4) = \int P(x_1, x_2 \mid z_1) P(z_1 \mid x_3, x_4) dz_1$
- ► This places a constraint on the measured distribution P(x₁, x₂, x₃, x₄)
- Size of d-separating set = minimum dimension of z s.t. $P(x_1, x_2 \mid x_3, x_4) =$ $\int P(x_1, x_2 \mid z)P(z \mid x_3, x_4)dz$

Identifiability: Conditions

Condition 2 (Generalized Faithfulness)

A probability distribution P is faithful to a DAG $\mathcal G$ if every rank Jacobian constraint on a pair of set of measured variables that holds in P is entailed by every structural equation model with respect to $\mathcal G$.

Identifiability: Conditions

Condition 2 (Generalized Faithfulness)

A probability distribution P is faithful to a DAG $\mathcal G$ if every rank Jacobian constraint on a pair of set of measured variables that holds in P is entailed by every structural equation model with respect to $\mathcal G$.

Condition 3 (Differentiability)

- 1. For every pair of measured sets \mathbb{X} and \mathbb{Y} , the function $f: \mathbb{R}^{|\mathbb{X}|} \to \mathbb{R}^{|\mathbb{Y}|}$ defined as $f(\mathbf{x}) = \mathbb{E}[\mathbf{y}|\mathbf{x}]$ is continuously differentiable.
- 2. For every pair of measured set \mathbb{X} and latent set \mathbb{Z} , there exists a continuous differentiable function $g: \mathbb{R}^{|\mathbb{X}|} \to \mathbb{R}^{|\mathbb{Z}|}$ such that p(z|x) = p(z|g(x)).

Identifiability: Jacobian Indicator

Theorem 1

Let the causal model $\mathcal G$ satisfy Conditions 1-3. For any two sets of measured variables $\mathbb X$ and $\mathbb Y$ in $\mathcal G$, let $f(\mathbf x)=\mathbb E[\mathbf y|\mathbf x]$. For any $r<|\mathbb X|,|\mathbb Y|$, the rank of the Jacobian matrix $\mathbf J_f=\frac{\partial f}{\partial \mathbf x}=r$ if and only if the size of the smallest set of latent variables that d-separates $\mathbb X$ from $\mathbb Y$ is r. Formally,

$$\operatorname{rank}(\mathbf{J}_f) = \min_{\mathbb{Z}} |\mathbb{Z}| \quad \text{such that} \quad \mathbb{X} \perp \!\!\! \perp_{\mathcal{G}} \mathbb{Y}|\mathbb{Z}$$
 (1)

Identifiability: Structural Lemmas

Lemma 1: Pure Children

A set of measured variables $\mathbb S$ are pure children of the same parent if and only if for any subset $\mathbb T\subseteq \mathbb S$, $r(\mathbb T,\mathbb X\setminus \mathbb T)=1$.

Identifiability: Structural Lemmas

Lemma 1: Pure Children

A set of measured variables $\mathbb S$ are pure children of the same parent if and only if for any subset $\mathbb T\subseteq \mathbb S$, $r(\mathbb T,\mathbb X\setminus \mathbb T)=1$.

Lemma 2: Non-Pure Children

c is a child of exactly the variables in \mathbb{P} if and only if:

1. For each $\mathbb{S}\subseteq\mathbb{X}$ such that $|\mathbb{S}\cap\mathsf{Ch}(z_i)|=1$ for each $z_i\in\mathbb{P}$:

$$r(\mathbb{S}, \mathbb{X} \setminus (\mathbb{S} \cup \{c\})) = r(\mathbb{S} \cup \{c\}, \mathbb{X} \setminus (\mathbb{S} \cup \{c\}))$$

2. The equality in condition (1) does not hold for any proper subset of \mathbb{P} .

Identifiability: Structural Lemmas

Lemma 1: Pure Children

A set of measured variables $\mathbb S$ are pure children of the same parent if and only if for any subset $\mathbb T\subseteq\mathbb S$, $r(\mathbb T,\mathbb X\setminus\mathbb T)=1$.

Lemma 2: Non-Pure Children

c is a child of exactly the variables in \mathbb{P} if and only if:

1. For each $\mathbb{S}\subseteq\mathbb{X}$ such that $|\mathbb{S}\cap\mathsf{Ch}(z_i)|=1$ for each $z_i\in\mathbb{P}$:

$$r(\mathbb{S}, \mathbb{X} \setminus (\mathbb{S} \cup \{c\})) = r(\mathbb{S} \cup \{c\}, \mathbb{X} \setminus (\mathbb{S} \cup \{c\}))$$

2. The equality in condition (1) does not hold for any proper subset of \mathbb{P} .

Lemma 3: Independent Child

A measured variable c has no parent if and only if $r(\lbrace c \rbrace, \mathbb{X} \setminus \lbrace c \rbrace) = 0$.

Differentiable Causal Discovery Approach: Matching Distributions

Differentiable Causal Discovery Approach: Matching Distributions

$$\mathbf{z}_{j}^{i} = f_{j}^{i}(\mathbf{M}^{i+1} \odot \mathbf{z}^{i+1}, \varepsilon_{\mathbf{z}_{j}^{i}}), \tag{2}$$

$$x_j = g_j(\mathbf{M}^1 \odot \mathbf{z}^1, \varepsilon_{x_j}). \tag{3}$$

Differentiable Causal Discovery Approach: Matching Distributions

$$z_j^i = f_j^i(\mathbf{M}^{i+1} \odot \mathbf{z}^{i+1}, \varepsilon_{z_i^i}), \tag{2}$$

$$x_j = g_j(\mathbf{M}^1 \odot \mathbf{z}^1, \varepsilon_{x_i}). \tag{3}$$

Variational Approach

Maximize the evidence lower bound (ELBO):

$$\log p(\mathbf{x}; \theta, \mathbf{M}) \ge -\mathsf{KL}(q(\epsilon|\mathbf{x})||p(\epsilon; \theta)) + \mathbb{E}_q[\log p(\mathbf{x}|\epsilon; \theta, \mathbf{M})] \quad (4)$$

- **Encoder:** Models approximate posterior $q(\epsilon|x)$
- ▶ Decoder: Models conditional likelihood $p(\mathbf{x}|\epsilon; \theta, \mathbf{M})$ according to SEM
- ightharpoonup represents all noise terms combined

Differentiable Causal Discovery Approach: Enforcing Structural Constraints

Differentiable Causal Discovery Approach: Enforcing Structural Constraints

Pure Children Constraint

$$\left\| \mathbf{M}_{i,:} \odot \prod_{j \neq i} (1 - \mathbf{M}_{j,:}) \right\|_{1} \ge 2 \quad \forall i.$$
 (5)

Differentiable Causal Discovery Approach: Enforcing Structural Constraints

Pure Children Constraint

$$\left\| \boldsymbol{M}_{i,:} \odot \prod_{j \neq i} (1 - \boldsymbol{M}_{j,:}) \right\|_{1} \ge 2 \quad \forall i.$$
 (5)

Final Objective

$$\mathcal{L}_{\text{final}} = -\mathbb{E}_{\boldsymbol{M} \sim \sigma(\gamma)} \left[\text{ELBO}(\theta, \boldsymbol{M}) \right] + \lambda_1 \mathcal{L}_{\text{ind}}(\epsilon) + \lambda_2 \|\sigma(\gamma)\|_1$$

$$+ \lambda_3 \Big(\sum_{i} \max(0, \|\boldsymbol{M}_{i,:}\|_1 (2 - \|\boldsymbol{M}_{i,:} \odot \prod_{j \neq i} (1 - \boldsymbol{M}_{j,:})\|_1)) \Big)^2.$$

$$(7)$$

Experiments: Causal Discovery

Experiments: Causal Discovery

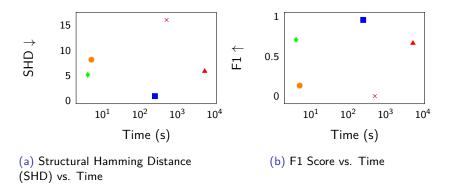


Figure: Performance vs. Time. Methods compared: Ours (\blacksquare), KONG (\blacktriangle), HUANG (\blacklozenge), GIN (\bullet), DeCAMFounder (\times).

Experiments: Images

Experiments: Images

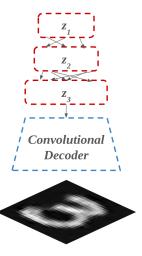


Figure: Architecture

Experiments: Images

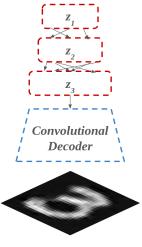


Figure: Architecture

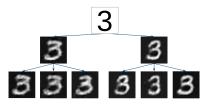


Figure: Discovered latent structure

Conclusion

- We establish identifiability of latent hierarchical causal models in the general case.
- We formulate a scalable differentiable approach.
- Extensive experiments validate the performance and scalability of our approach.