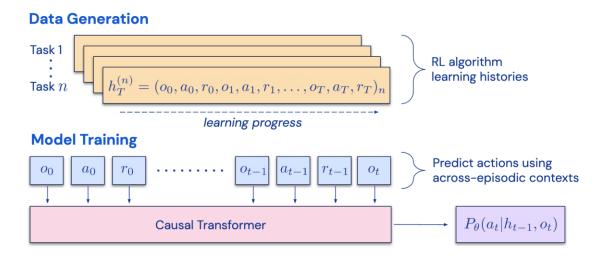
Distilling Reinforcement Learning Algorithms for In-Context Model-Based Planning

Jaehyeon Son, Soochan Lee, Gunhee Kim

Prior Works on In-Context RL

- Prior works collect *learning histories* of specific RL algorithm.
- Then, they feed them to Transformer to model policy improvement process.
- Transformer mimics the *exploration-exploitation behavior* of the source algorithm.



< Algorithm Distillation > Laskin et al., 2023

Limitations of Previous Approaches

- Previous approaches inherit suboptimal behaviors of source algorithms.
- RL algorithms deliberately prevent abrupt changes.

$$egin{aligned} & \max_{ heta} & \mathbb{E}_{s \sim
ho_{ heta_{ ext{old}}}, a \sim q} \left[rac{\pi_{ heta}(a|s)}{q(a|s)} Q_{ heta_{ ext{old}}}(s, a)
ight]. \ & ext{subject to} & \mathbb{E}_{s \sim
ho_{ heta_{ ext{old}}}} \left[D_{ ext{KL}} \left(\pi_{ heta_{ ext{old}}}(\cdot|s) \| \pi_{ heta}(\cdot|s)
ight)
ight] \leq \delta. \end{aligned}$$

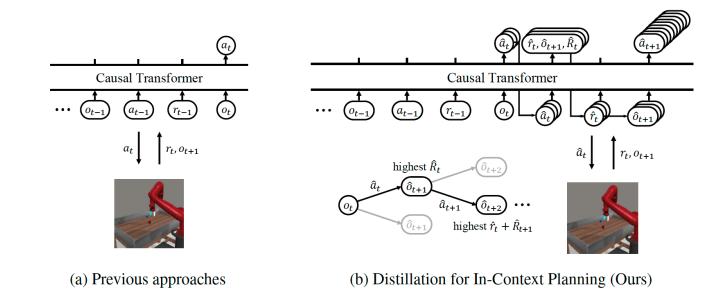
<TRPO> Schulman et al., 2015

$$egin{aligned} oldsymbol{r}_t\left(heta
ight) &= rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{ ext{old}}}(a_t|s_t)} \ &L^{ ext{CLIP}}(heta) &= \hat{\mathbb{E}}_t\left[\min\left(r_t\left(heta
ight)\hat{A}_t\overline{\left(ext{clip}(r_t\left(heta
ight),1-\epsilon,1+\epsilon
ight)}\hat{A}_t
ight)
ight], \ &L^{ ext{CLIP+VF+S}}_t\left(heta
ight) &= \hat{\mathbb{E}}_t\left[L^{ ext{CLIP}}_t\left(heta
ight)-c_1L^{ ext{VF}}_t\left(heta
ight)+c_2S\left[\pi_{ heta}
ight]\left(s_t
ight)
ight], \end{aligned}$$

<PPO> Schulman et al., 2017

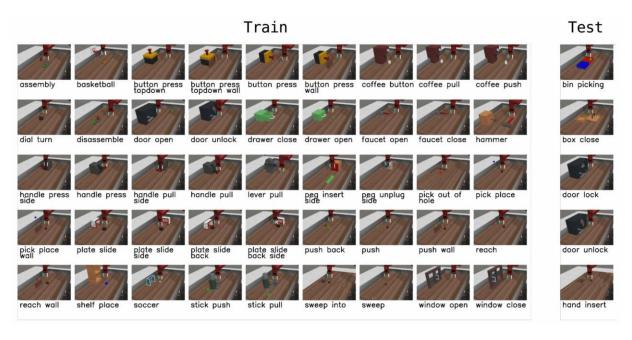
Distillation for In-Context Model-Based Planning (DICP)

- DICP predict not only actions, but also the outcome of the actions:
 - rewards, next observations, and return-to-go.
- Using this world model, DICP simulates the future before taking actions, without interactions.
- DICP constructs world model solely in-context even in novel tasks.



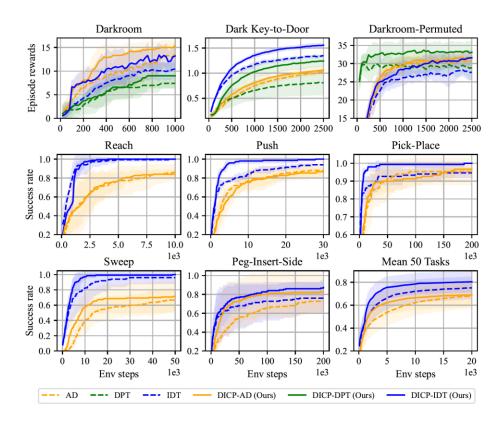
Experiments: Benchmarks

- Darkroom variants
 - Darkroom, Dark Key-to-Door, Darkroom-Permuted
- Meta-World benchmark suite



<Meta-World> Yu et al., 2019

Experiments: Learning Curves & Main Table



Method	Reach	Push	Pick-Place	Sweep	Peg-Insert-Side	Max Steps
RL^{2*}	100	96	98	_	_	300M
$MAML^*$	100	94	80	_	_	300M
$PEARL^*$	68	44	28	-	_	300M
MACAW^\dagger	_	_	_	4	0	5K
$FOCAL^\dagger$	_	_	-	38	10	5K
MuZero	100	100	100	_	_	10M
MoSS	86	100	100	_	_	40M
BoREL^\dagger	_	_	_	0	0	5K
IDAQ^{\dagger}	_	_	-	59	30	5K
AD	86	88	96	67	73	200K
IDT	100	94	95	96	76	200K
DICP-AD (Ours)	84	87	97	71	83	200K
DICP-IDT (Ours)	100	100	100	100	87	200K

Conclusion

- · We introduced an in-context model-based RL framework.
- Our approach effectively addresses the limitations of previous approaches to in-context RL.
- Our approach demonstrated superior performance across various environments.