

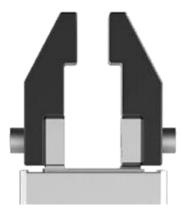
Efficient Residual Learning with Mixture-of-Experts for Universal Dexterous Grasping

ICLR2025

ZiyeHuang, HaoqiYuan ,YuhuiFu ,ZongqingLu
Peking University

Introduction

- Universal Dexterous Grasping
 - Grasping a wide range of objects with a single policy
- Challenges
 - High degrees of freedom(DoFs)
 - parallel gripper: 1
 - dexterous hand: 12+
 - High variability in object geometry

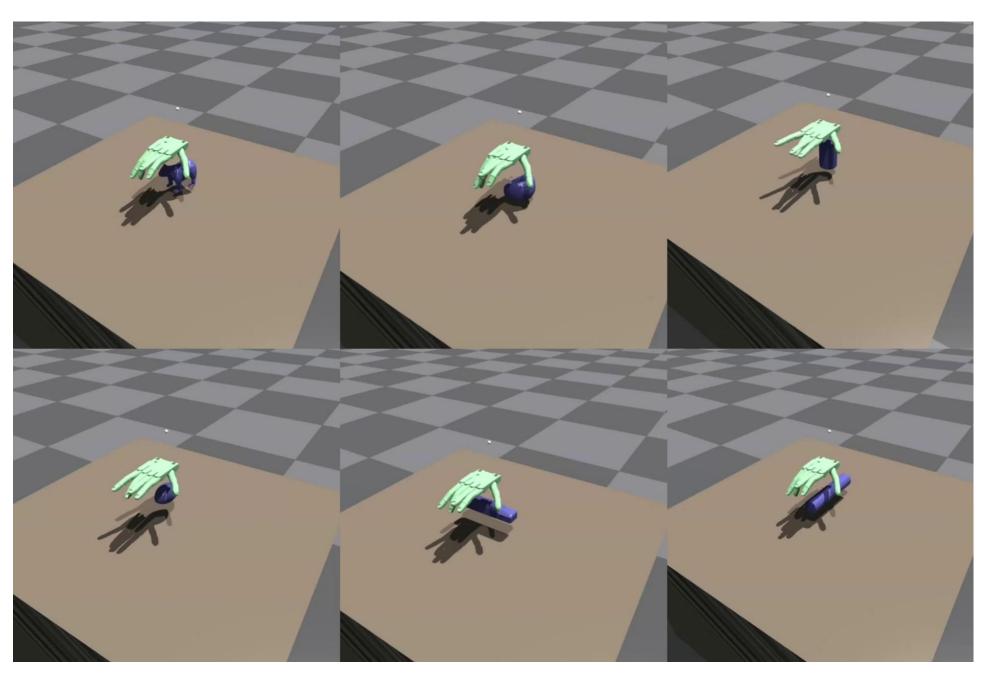


parallel gripper

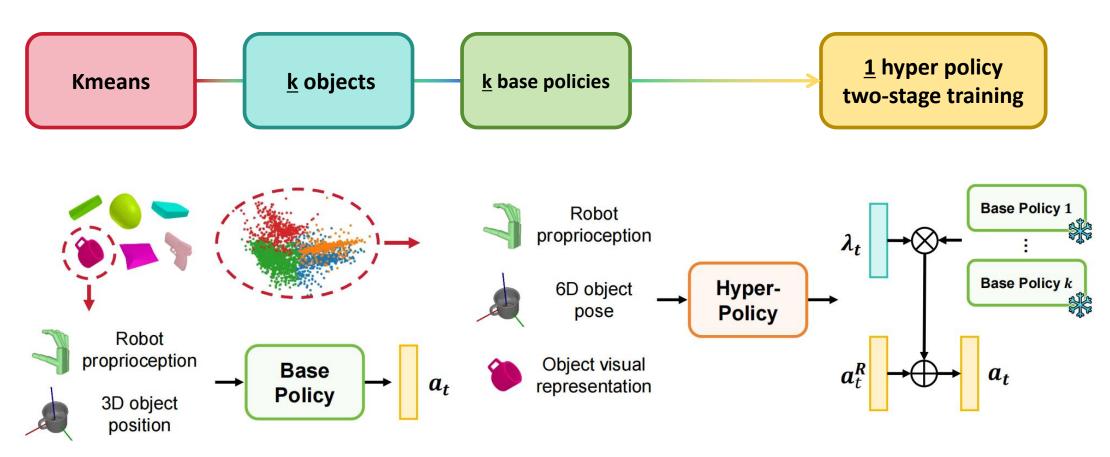
shadow hand

Introduction

- Online RL
- state-based and vision-based
 - state-based: object states are available
 - vision-based: only propriocpetion and vision input(point cloud, RGB, Depth...)
- From state-based to vision-based
 - Directly train a vision-based policy is difficult
 - Solution: teacher-student framework
 - use <u>Dagger</u>(an online imitation learning method)
- We only need a state-based universal grasping policy



Overview



1. Learning Geometry-Agnostic Experts

2. Residual Multi-Task RL with MoE

Learning Geometry-Agnostic Experts

- Motivation
 - a generalizable base policy facilitates exploration
- Empirical insights
 - Policies trained solely on robot proprioception generalize better
 - (Agarwal et al. 2023)
 - Limiting observations
 - Avoid <u>overfitting to specific object features</u>
 - Learn more generalizable grasping strategies

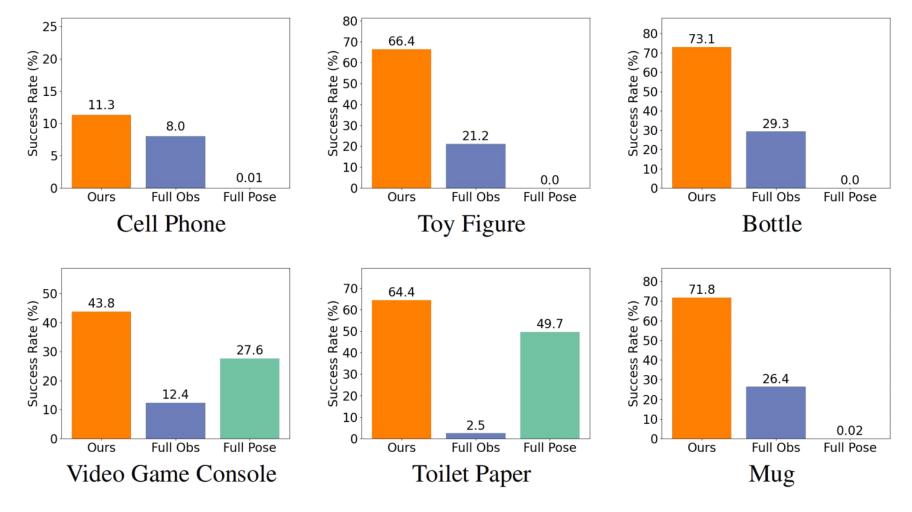
Learning Geometry-Agnostic Experts

- Principle: Less observation, more generalizable
- Use limited observation to train a single-task base policy
- Reward function

$$r = r^{pose} + r^{task}$$
 $r^{task} = r^{reach} + r^{lift} + r^{move} + r^{bonus}$
 $r^{pose}_t = -\|\boldsymbol{q} - \boldsymbol{q}_t\|,$

- Grasp pose (R, t, q)
 - full grasp pose leak object information("where to grasp"...)
 - only use **q** to strike a <u>balance</u> between performance and generalizability

Learning Geometry-Agnostic Experts



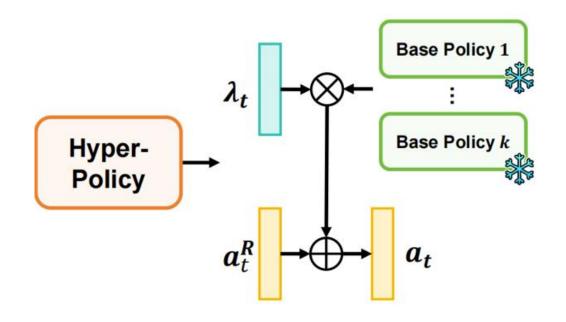
Success rates on the whole training set(3200 objects)

Residual Multi-task RL with MoE

- Hyper policy
 - Combine k fixed base policies with normalized weights(MoE)
 - Add residual action

$$a_t = a_t^R + \frac{1}{\|\lambda_t\|} \sum_{i=1}^k \lambda_{t,i} a_{t,i}^B,$$

- Residual Learning
 - refine objects that can be successfully grasped
 - explore with base actions
- Mixture of Experts
 - make grasping more natural



Main Results

		Test(%)		
Method	Train(%)	Uns. Obj. Seen Cat.	Uns. Cat.	
UniDexGrasp	79.4	74.3	70.8	
UniDexGrasp++	87.9	84.3	83.1	
ResDex (stage-1)	90.6±0.6	89.7±0.8	90.9±0.1	
ResDex (stage-2)	94.6 ± 1.6	94.4 ± 1.7	95.4 ± 1.0	

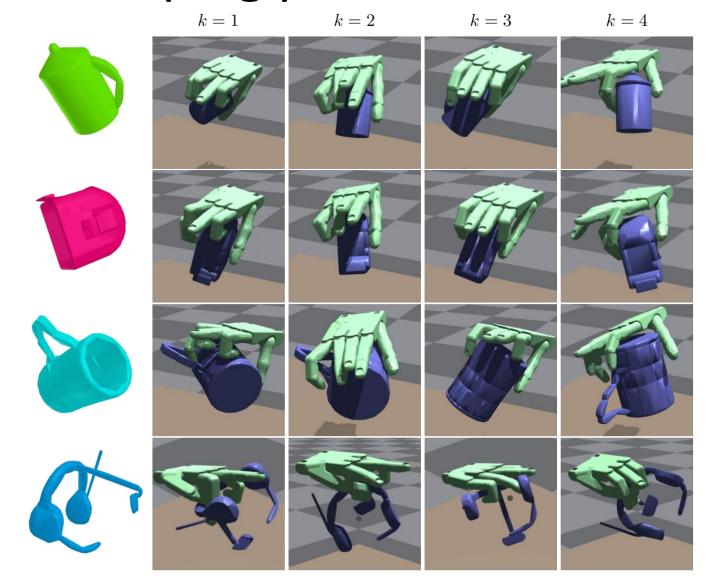
State-based policies(k=4)

		Test(%)		
Methods	Train(%)	Uns. Obj. Seen Cat.	Uns. Cat.	
UniDexGrasp	73.7	68.6	65.1	
UniDexGrasp++	85.4	79.6	76.7	
ResDex	88.8	88.5	87.2	

Vision-based policies

- Outperform baselines
- No generalization gap

Quality of Grasping poses

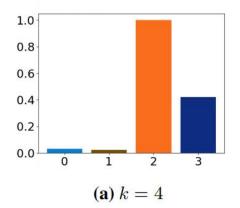


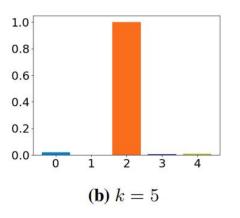
Quality of Grasping poses

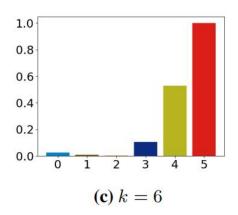
$$D = -\sum_{t=1}^T r_t^{ ext{pose}}$$

Lower D, higer quality of graping poses

Methods	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$m{D}\downarrow$	223.6	174.5	194.3	176.3	204.6	176.1







Diversity of the learned λ

- 1. Xu, Yinzhen, et al. "Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal generation and goal-conditioned policy." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
- 2. Wan, Weikang, et al. "Unidexgrasp++: Improving dexterous grasping policy learning via geometry-aware curriculum and iterative generalist-specialist learning." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
- 3. Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011.
- 4. Agarwal, Ananye, et al. "Dexterous functional grasping." arXiv preprint arXiv:2312.02975 (2023).
- 5. Johannink, Tobias, et al. "Residual reinforcement learning for robot control." 2019 international conference on robotics and automation (ICRA). IEEE, 2019.

Thank you!