# Towards Bridging Generalization and Expressivity of Graph Neural Networks

Shouheng Li<sup>1,2</sup>, Floris Geerts<sup>3</sup>, Dongwoo Kim<sup>4</sup>, Qing Wang<sup>2</sup>

<sup>1</sup>Data61 CSIRO <sup>2</sup>Australian National University <sup>3</sup>University of Antwerp <sup>4</sup>POSTECH









This research was supported partially by the Australian Government through the Australian Research Council's Discovery Projects funding scheme (project DP210102273) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(RS-2024-00337955 and RS-202300217286).

#### Motivation & Problem

- There is a lot of recent research on GNN expressivity, but much less is known about GNN generalization.
- Common belief: More expressivity → risk of overfitting.
- Contradiction: Empirically some powerful GNNs generalize well.
- Challenge: Understanding how generalization is influenced by graph structure.

**Goal**: Explain **how** and **when** added *expressivity* can lead to **improved generalization**.

## **Key Contributions**

- Propose a novel generalization bound for GNNs that incorporates graph structure variance.
- Identify conditions for GNNs to generalize well from their bounded expressivity:
  - Embeddings within a class are well-clustered
  - Classes are separable in the embedding space
- Show how expressivity influences generalization by case studies
- Validate the theoretical insights by showing the alignment with empirical findings

### **Graph Encoders**

A graph encoder maps a graph  $G \in \mathcal{G}$  to a vector in some space  $\mathcal{Z}$ .

- GNNs are graph encoders: MPNN/F-MPNN/k-GNN/...
- Weisfeiler-Lehman are also graph encoders: 1-WL/F-WL/k-WL/...
- Random walk encoder, subtree encoder, ...

For a graph encoder  $\phi$ , bound its **generalization error** 

$$R(\phi) - \hat{R}(\phi)$$

- $R(\phi)$ : true/population error
- $\hat{R}(\phi)$ : empirical error

## Main Theoretical Result (1/3)

#### A Tale of Two Graph Encoders

- Weaker encoder:  $\phi: \mathcal{G} \to \mathcal{Z}_{\phi}$
- Stronger encoder:  $\lambda:\mathcal{G}\to\mathcal{Z}_{\lambda}$
- $\lambda$  bounds  $\phi$  in expressivity
  - if  $\lambda$  can distinguish all graphs that  $\phi$  can distinguish
  - there is  $f: \mathcal{Z}_{\lambda} \to \mathcal{Z}_{\phi}$  such that  $\phi = f \circ \lambda$

## Main Theoretical Result (1/3)

#### A Tale of Two Graph Encoders

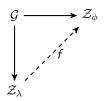
- Weaker encoder:  $\phi: \mathcal{G} \to \mathcal{Z}_{\phi}$
- Stronger encoder:  $\lambda:\mathcal{G}\to\mathcal{Z}_{\lambda}$
- $\lambda$  bounds  $\phi$  in expressivity
  - ullet if  $\lambda$  can distinguish all graphs that  $\phi$  can distinguish
  - there is  $f: \mathcal{Z}_{\lambda} \to \mathcal{Z}_{\phi}$  such that  $\phi = f \circ \lambda$

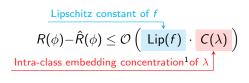
$$\phi$$
: MPNN/ $\mathcal{F}$ -MPNN/k-GNN/... is **bounded by**  $\lambda$ : 1-WL/ $\mathcal{F}$ -WL/k-WL/...

# Main Theoretical Result (2/3)

#### Margin-Based Generalization Bound (Informal)

Let encoder  $\lambda$  bounds encoder  $\phi$ :

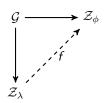


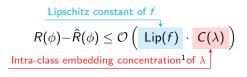


# Main Theoretical Result (2/3)

#### Margin-Based Generalization Bound (Informal)

Let encoder  $\lambda$  bounds encoder  $\phi$ :





#### Takeaway:

The stronger encoder  $\lambda$  (e.g. 1-WL/ $\mathcal{F}$ -WL/k-WL etc.) hints at the generalization of the weaker encoder  $\phi$  (e.g. MPNN/ $\mathcal{F}$ -MPNN/k-GNN)

Measured by Wasserstein distance

# Main Theoretical Result (3/3)

The above generalization bound is lower bounded by (Informal)

Intra-class embedding concentration  $^1$  of  $\lambda$ 

$$\mathcal{O}\left(\frac{\mathsf{Lip}(f)\cdot \frac{\mathsf{C}(\lambda)}{\mathsf{C}(\lambda)}}{B(\lambda)}\right).$$

Inter-class embedding separation  $^1$  of  $\lambda$ 

## Main Theoretical Result (3/3)

The above generalization bound is lower bounded by (Informal)

$$\mathcal{O}\left(\frac{\mathsf{Lip}(f) \cdot \boxed{\mathcal{C}(\lambda)}}{B(\lambda)}\right).$$
 Inter-class embedding separation 1 of  $\lambda$ 

**Key Insight**: Low intra-class variance + high inter-class separation  $\rightarrow$  better generalization.

Also, we can predict GNNs' generalization before training them!

Measured by Wasserstein distance

## Case Study: PROTEINS Dataset

|                           | Initial Verte     | ex Colors<br>G' | After One | Iteration $G'$ | Graph Embeddings<br>(Difference)                     | Wasserstein<br>Distance |
|---------------------------|-------------------|-----------------|-----------|----------------|------------------------------------------------------|-------------------------|
| (a)<br>1-WL               |                   |                 | 3 6       |                | 3<br>2<br>3<br>1 2 2 2 -G'<br>0 11 10 11 1           | 4.796                   |
| (b)<br>C <sub>4</sub> -WL | 0 3<br>5 0<br>2 3 | 8               |           |                | 3<br>2<br>1 12 -G<br>0 11111 1111111 -G'             | 4.123                   |
| (c)<br>K <sub>4</sub> -WL | 2 3               |                 |           |                | 3<br>2<br>1<br>1 11 11 11 11 11 11 11 11 11 11 11 11 | 5.000                   |

Takeaway: The choice of patterns leads to different generalization.

## **Experimental Results Summary**

|          |              |             | Dot         | neat         |             |             | ENZYMES -1.0                                 |
|----------|--------------|-------------|-------------|--------------|-------------|-------------|----------------------------------------------|
|          |              | Dataset     |             |              |             |             | g                                            |
| # Layers |              | ENZYMES     | PROTEINS    | MUTAG        | SIDER       | BACE        | -0.5                                         |
| 1        | Loss gap     | 0.248±0.040 | 0.029±0.015 | -0.070±0.017 | 0.037±0.003 | 0.018±0.017 | -0.0                                         |
|          | Our Bound    | 7.926±1.279 | 2.193±0.702 | 1.216±0.169  | 0.511±0.286 | 1.479±0.301 | Q                                            |
|          | VC dimension | 586         | 929         | 51           | 960         | 621         |                                              |
|          | VC bound     | 1.302±0.000 | 1.292±0.001 | 1.100±0.004  | 1.302±0.000 | 1.301±0.000 | Gap Ours VC PAC                              |
|          | PAC bound    | 3.48        | 5.04        | 3.06         | 52.39       | 21.525      | PROTEINS -1.0                                |
| 1        | Loss gap     | 0.242±0.026 | 0.032±0.010 | -0.074±0.007 | 0.038±0.003 | 0.037±0.019 | 0.5                                          |
|          | Our bound    | 7.425±0.982 | 1.404±0.144 | 1.247±0.155  | 0.620±0.463 | 1.729±0.251 | -0.5                                         |
|          | VC dimension | 595         | 996         | 121          | 1300        | 1060        | 9                                            |
|          | VC bound     | 1.302±0.000 | 1.292±0.000 | 1.281±0.003  | 1.302±0.000 | 1.302±0.000 | o.                                           |
|          | PAC bound    | 12.75       | 31.94       | 8.17         | 132.79±8.12 | 51.573      | Gap Ours VC PAC                              |
| 2        | Loss gap     | 0.237±0.035 | 0.025±0.009 | -0.058±0.012 | 0.038±0.002 | 0.032±0.011 | MUTAG                                        |
|          | Our Bound    | 6.513±0.951 | 1.421±0.220 | 1.649±0.158  | 0.409±0.253 | 1.789±0.226 | 2 -1.                                        |
|          | VC dimension | 595         | 996         | 135          | 1309        | 1089        | dg syn o                                     |
|          | VC bound     | 1.302±0.000 | 1.293±0.000 | 1.286±0.002  | 1.302±0.000 | 1.302±0.000 |                                              |
|          | PAC bound    | 56.98       | 276.78      | 21.96±0.00   | 341.04      | 124.605     | Ş                                            |
| 4        | Loss gap     | 0.235±0.038 | 0.027±0.005 | -0.073±0.009 | 0.036±0.001 | 0.022±0.030 | -0.                                          |
|          | Our Bound    | 6.825±0.796 | 1.434±0.297 | 1.535±0.115  | 0.298±0.080 | 1.686±0.377 | Gap Ours VC PAC                              |
|          | VC dimension | 595         | 996         | 139          | 1309        | 1093        | SIDER -1.0                                   |
|          | VC bound     | 1.302±0.000 | 1.292±0.001 | 1.291±0.002  | 1.302±0.000 | 1.302±0.000 | , in the second                              |
|          | PAC bound    | 308.43      | 2331.63     | 57.69        | 845.62      | 310.732     | -0.5                                         |
| 5        | Loss gap     | 0.256±0.037 | 0.020±0.007 | -0.071±0.021 | 0.035±0.001 | 0.020±0.020 | -0.0                                         |
|          | Our Bound    | 6.384±0.813 | 1.308±0.165 | 1.773±0.194  | 0.369±0.172 | 1.662±0.120 | 0                                            |
|          | VC dimension | 595         | 996         | 139          | 1309        | 1093        |                                              |
|          | VC bound     | 1.302±0.000 | 1.292±0.001 | 1.292±0.002  | 1.302±0.000 | 1.302±0.000 | Gap Ours VC PAC                              |
|          | PAC bound    | 1615.10     | 17992.81    | 155.74       | 2179.21     | 744.08      | BACE -1                                      |
| 6        | Loss gap     | 0.264±0.025 | 0.030±0.008 | -0.078±0.019 | 0.034±0.002 | 0.022±0.016 | Ours Gap                                     |
|          | Our Bound    | 6.151±0.798 | 1.340±0.316 | 1.627±0.038  | 0.353±0.156 | 1.785±0.237 |                                              |
|          | VC dimension | 595         | 996         | 139          | 1309        | 1093        | ≥ -0                                         |
|          | VC bound     | 1.302±0.000 | 1.292±0.001 | 1.291±0.002  | 1.302±0.000 | 1.302±5.870 | O. A. C. |
|          | PAC bound    | 8931.00     | 135762.52   | 410.31       | 5254.88     | 1860.94     | Gap Ours VC PAC                              |

Takeaway: The proposed bound reflects the empirical gaps well.

#### Conclusion

- Develop a theoretical framework linking GNN expressivity and generalization.
- Demonstrate how well-clustered embeddings and separable classes lead to improved generalization.
- Provide guidance for designing robust, expressive, and generalizable GNNs.

**Future Work**: Extend to understand how the training dynamics changes *f* and further influences generalisation.