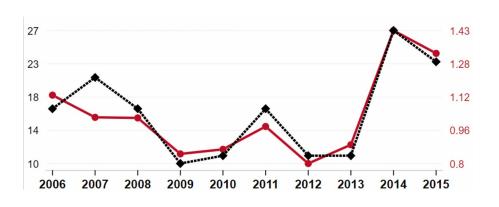
Causal Order: The Key to Leveraging Imperfect Experts in Causal Inference

Aniket Vashishtha¹, Abbavaram Gowtham Reddy², Abhinav Kumar³, Saketh Bachu², Vineeth N Balasubramanian², Amit Sharma¹

Microsoft Research India¹, IIT Hyderabad², MIT³

Challenges in Causal Graph Discovery

- Learning the graph is a fundamental task
- All downstream causal tasks depend on the graph



Differentiating causation from correlation through observational data requires domain knowledge, in addition to discovery algorithms. [Tu et al. 2019, Huang et al. 2021, Kaiser & Sipos 2022]

Idea: Use LLMs' world knowledge to infer graph edges

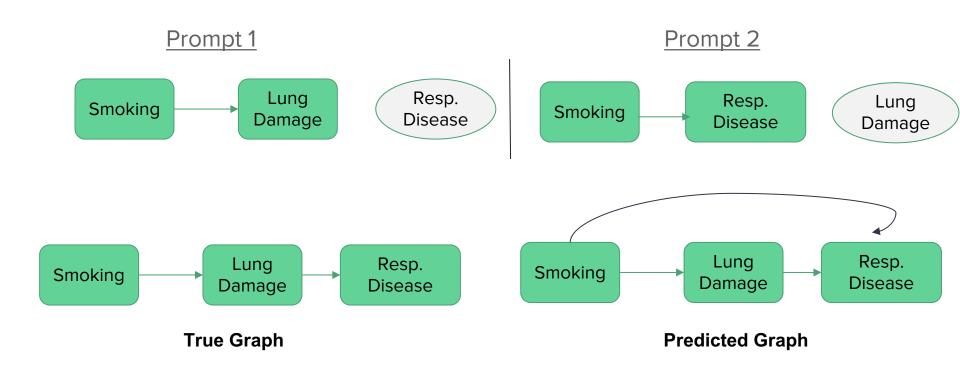
- Pairwise Prompt: A
 popular way to infer
 causal edge in a graph
 [Antonucci et al. 2023, Cohrs et
 al. 2023, Kiciman et al. 2023,
 Long et al. 2023, Willig et al.
 2022].
 - Given a pair of variables, ask LLM to determine direction and existence of an edge.
- Iterate over all pairs to build a causal graph.

You are a helpful assistant to a neuropathic pain diagnosis expert. Which cause-and-effect relationship is more likely?

- **A.** Left T6 Radiculopathy causes DLS T5-T6.
- **B.** DLS T5-T6 causes Left T6 Radiculopathy.
- **C.** No causal relationship exists.

Let's work this out in a step by step way to be sure that we have the right answer. Then provide your final answer within the tags <Answer>A/B</Answer>.

Fundamental Problem: Cannot distinguish direct and indirect effects using pairwise prompting



Fundamental Problem: Cannot distinguish direct and indirect effects using pairwise prompting, **even for human experts**

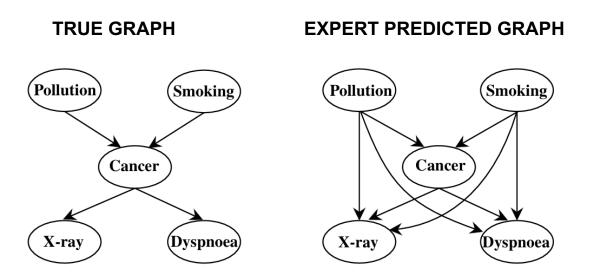


Figure 1: Cancer dataset (Scutari & Denis, 2014):

Key Insight: Graph is not the right output interface for experts' knowledge

- Experts such as LLMs and humans can only convey ancestral constraints [Ban et al. 2023]
- We propose Causal Order as the output interface of experts' knowledge

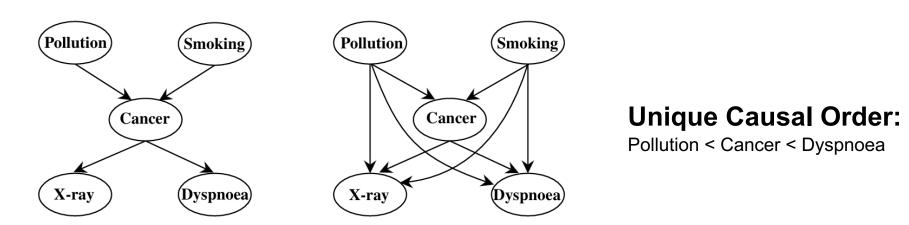
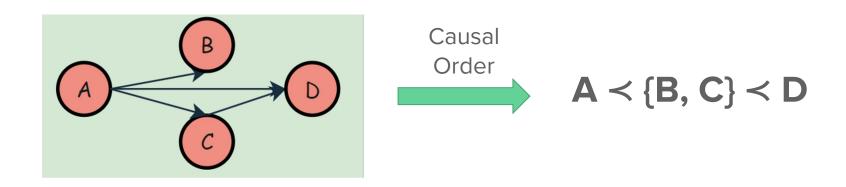


Figure 1: Cancer dataset (Scutari & Denis, 2014):

Causal Order: Definition

Causal order is a partial order relation over a set of entities or events, satisfying asymmetry and transitivity, representing the **temporal precedence of cause-and-effect relationships**.



Graphs from experts can have significant errors, even when the expert is "Perfect"!

SHD score when $D_{top} = 0$

 Perfect Expert: Outputs an edge if a directed path exists between two nodes

Theorem: Consider a procedure to estimate a graph by using pairwise queries to a Perfect Expert.

SHD of the estimated graph can have significant error, whereas causal order is always correct.

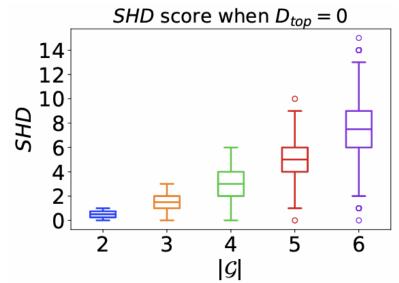


Figure 3: Variability of SHD for various graph sizes with $D_{top} = 0$ within each graph.

So, what's the solution?

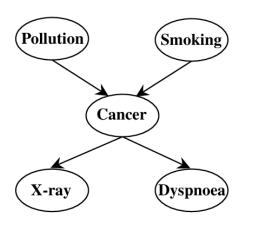
Use causal order.

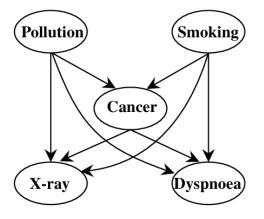
Causal order is a simpler construct, but still useful

For **causal effect estimation**, causal order is necessary and sufficient for estimating a valid backdoor set (under no unobserved confounding).

[consider nodes before treatment in causal order]

For **obtaining the graph**, we can use causal order as a prior or constraint for graph discovery algorithms.





Causal Order:

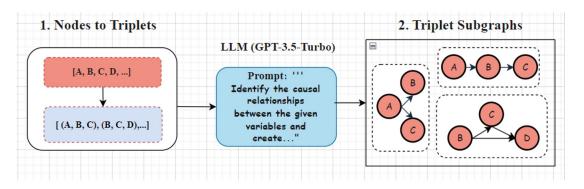
{Smoking, Pollution} < Cancer < X-Ray < Dyspnoea

Causal Effect of Cancer on Dyspnoea:

Backdoor set: {Smoking, Pollution}

How to estimate causal order? Triplet Method

- Inspired by PC Algorithm, group nodes into sets of three
 - Boosts accuracy in identifying direct and indirect effects
- Utilize LLMs to orient edges in each triplet group
 - For each variable pair, obtain (n-2) edge predictions
- For each variable pair, decide final edge through majority voting
- Extract final causal order as domain prior



Triplet Approach to Infer Accurate Causal Order

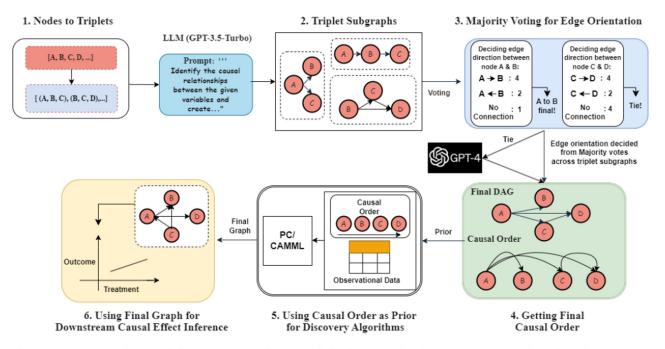


Figure 1: The *LLM-augmented* causal inference process based on inferring causal order. We propose a triplet-based prompting technique to infer all three-variable subgraphs and aggregate them using majority voting to produce a causal order. The causal order (optionally combined with discovery algorithms like PC or CaMML) can then be used to identify a valid back-door adjustment set. Ties in causal order are broken using GPT-4.

Evaluation: BnLearn and 3 recent real-world datasets

- Evaluation conducted on benchmark datasets from BNLearn repository across different scales of nodes
- Lesser known Neuropathic pain diagnosis, Covid-19 and Alzheimers dataset.

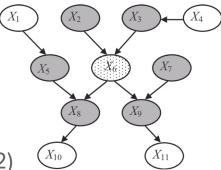
Dataset	Number of Nodes	Number of Edges	Description (used as a context)
Asia	8	8	Model the possible respiratory problems someone can have who has recently visited Asia and is experiencing shortness of breath
Cancer	5	4	Model the relation between various variables responsible for causing Cancer and its possible outcomes
Earthquake	5	5	Model factors influencing the probability of a burglary
Survey	6	6	Model a hypothetical survey whose aim is to investigate the usage patterns of different means of transport
Child	20	25	Model congenital heart disease in babies
Neuropathic Pain Diagnosis (subgraph)	22	25	For neuropathic pain diagnosis

Baseline methods based on pairwise prompt

A B

<u>Pairwise Base</u>: Orienting edges between a given pair of nodes.

- Iterative Context: Previously oriented pairs added as context for next orientation (X_1) (X_2)
- Markov Blanket: Markov blanket of node pairs being evaluated as context
- Chain of Thought Reasoning: Applying Wei et al.'s (2022) approach, aligning LLMs in-context using real-world entity pairs with causal orientation and reasoning



CoT enhances pairwise accuracy, but Triplet prompt yields significantly more accurate causal order.

Triplet prompt avoids cycles.

Accuracy difference is higher for larger graphs.

Dataset	Metric	Pairwise (Base)	Pairwise (CoT)	Triple
		Using LLM		
	D_{top}	0	0	0
Couth avale	SHD	7	4	4
Earthquake	Cycles	0	0	0
	IN/TN	0/5	0/5	0/5
	D_{top}	3	1	0
Survey	SHD	12	9	9
Survey	Cycles	0	0	0
	IN/TN	0/6	2/6	0/6
	D_{top}	0	-	1
Cancer	SHD	6	-	6
Cuncer	Cycles	0	-	0
	IN/TN	0/5	-	0/5
	D_{top}	-	-	1
Asia-M	SHD	15	13	11
7 1514 171	Cycles	7	1	0
	IN/TN	0/7	0/7	0/7
	D_{top}	-	-	1
Child	SHD	177	138	28
Cima	Cycles	»3k	»500	0
	IN/TN	0/20	0/20	0/20
	D_{top}	_	0	0
Covid	SHD	41	27	30
Covid	Cycles	»1000	0	0
	IN/TN	0/20	0/20	0/20
	D_{top}	-	6	4
Alzheimers	SHD	42	26	28
	Cycles	684	0	0
	IÑ/TN	0/20	0/20	0/20
	D_{top}	_	-	3
NI	SHD	212	64	24
Neuropathic	Cycles	»5k	5	0

0/22

13/22

CoT enhances pairwise accuracy, but

Triplet prompt yields **significantly more accurate causal order**

Triplet prompt obtains better accuracy even with smaller models like Phi-3 and Llama-3, compared to pairwise with GPT-4.

Dataset	Metric	Pairwise GPT-4	Triplet Phi-3	Triplet Llama3
	D_{top}	1	0	2
Asia	SHĎ	18	13	17
Asia	Cycles	0	0	0
	IN/TN	0/5	1/5	0/5
	D_{top}	-	7	5
Alzheimers	Cycles	1	0	0
Aizheimeis	IN/TN	0/11	0/11	1/11
	D_{top}	-	17	12
Child	SHĎ	148	69	129
Cillia	Cycles	»10k	0	0
	IN/TN	0/20	0/20	0/20

Table 2: Comparison of GPT-4 Pairwise Base with Phi-3/Llama3 using the Triplet method, showing how smaller models outperform GPT-4 by producing cycle-free graphs. This underscores the importance of the triplet strategy, regardless of the expert model used.

Causal Discovery: Triplet order output enhances accuracy of discovery algorithms, esp. in data-constrained settings

	Dataset	PC	SCORE	ICA LINGAM	Direct LINGAM	NOTEARS	CaMML	Ours (PC+LLM)	Ours (CaMML+LLM)
	Earthquake	0.16 ± 0.28	4.00 ± 0.00	3.20 ± 0.39	3.00 ± 0.00	1.80 ± 0.74	2.00 ± 0.00	0.00 ± 0.00	$0.00{\pm}0.00$
	Cancer	0.00 ± 0.00	3.00 ± 0.00	4.00 ± 0.00	3.60 ± 0.48	2.00 ± 0.00	2.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
250	Survey	0.50 ± 0.00	3.00 ± 0.00	6.00 ± 0.00	6.00 ± 0.00	3.20 ± 0.39	3.33 ± 0.94	0.00 ± 0.00	1.00 ± 0.21
11	Asia	2.00 ± 0.59	5.00 ± 0.00	6.20 ± 0.74	7.00 ± 0.00	4.00 ± 0.00	1.85 ± 0.58	0.00 ± 1.00	0.00 ± 0.00
×.	Asia-M	1.50 ± 0.00	5.00 ± 0.00	7.60 ± 0.48	6.20 ± 1.16	3.40 ± 0.48	1.00 ± 0.00	$1.00{\pm}0.00$	1.21 ± 0.30
	Child	5.75 ± 0.00	8.80 ± 2.70	12.8 ± 0.97	13.0 ± 0.63	15.0 ± 1.09	3.00 ± 0.00	4.00±0.00	3.53 ± 0.45
	Neuropathic	4.00 ± 0.00	6.00 ± 0.00	13.0 ± 6.16	10.0 ± 0.00	9.00 ± 0.00	10.4 ± 1.95	3.00±0.00	5.00 ± 0.00

Causal Effect Inference: Triplet order + graph discovery enhances accuracy of backdoor estimation algorithms.

Dataset	Metric: ϵ_{ACE} (Treatment, Target)	PC	SCORE	ICA LiNGAM	Direct LiNGAM	NOTEARS	CaMML	Ours (PC+LLM)	Ours (CaMML+LLM)
Earthquake	(JohnCalls,alarm)	0.00 ± 0.00	0.85 ± 0.02	0.63 ± 0.10	0.63 ± 0.10	0.21 ± 0.12	0.08 ± 0.03	0.00 ± 0.00	0.00 ± 0.00
Cancer	(dyspnoea,cancer)	0.20 ± 0.01	0.30 ± 0.00	0.30 ± 0.01	0.30 ± 0.01	0.18 ± 0.02	0.06 ± 0.00	0.30 ± 0.00	0.00 ± 0.00
Survey	(T,E)	0.02 ± 0.00	0.04 ± 0.00	0.05 ± 0.01	0.05 ± 0.01	0.03 ± 0.00	0.03 ± 0.00	0.02 ± 0.01	0.01 ± 0.01
Asia	(smoke,dyspnoea)	0.10 ± 0.00	0.09 ± 0.00	0.27 ± 0.03	0.27 ± 0.04	0.14 ± 0.01	0.05 ± 0.00	0.02 ± 0.00	0.00 ± 0.00
Child	(Lung Parench,	0.22 ± 0.01	0.02 ± 0.00	0.52 ± 0.00	0.52 ± 0.00	0.52 ± 0.07	0.01 ± 0.00	0.22 ± 0.00	0.00 ± 0.00
	Lowerbody O2)								

Conclusion: Don't use pairwise prompts to infer edges

- Pairwise prompts are the dominant way to infer edges in causal graph.
- But they have a fundamental flaw, even when querying with Perfect Experts.
- Causal Order is a simpler and more robust structure, that is useful for downstream tasks such as discovery and effect inference.
- To estimate causal order, we introduce a Triplet Prompting method, surpassing various pairwise prompting baselines.
 - Triplet output boosts causal discovery algorithms and causal effect accuracy.

Backup

Causal order correlates with effect inference errors, unlike SHD, unsuitable for evaluating noisy expert causal inference

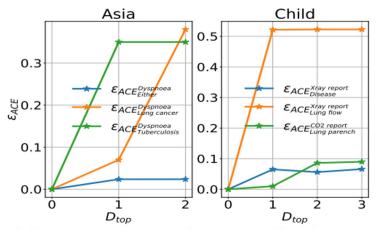


Figure 4. D_{top} vs. ϵ_{ACE} . ϵ_{ACE} increases as D_{top} increases, aligning with theoretical observations.

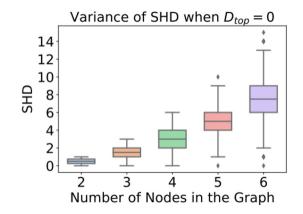
Cancer								
SHD v	SHD vs. $\epsilon_{ACE} \mid D_{top} = 0 \mid D_{top}$ vs. $\epsilon_{ACE} \mid SHD = 2$							
SHD	ϵ_{ACE}	$\mid D_{top} \mid$	ϵ_{ACE}					
0	0.00	0	0.00					
2	0.00	1	0.25					
4	0.00	2	0.50					
Asia								
SHD vs. $\epsilon_{ACE} \mid D_{top} = 0 \mid D_{top}$ vs. $\epsilon_{ACE} \mid SHD = 3$								
SHD	ϵ_{ACE}	$\mid D_{top} \mid$	ϵ_{ACE}					

3

0.14

0.22

0.57



0.00

0.00

0.00

10

How can Order based evaluation be done?

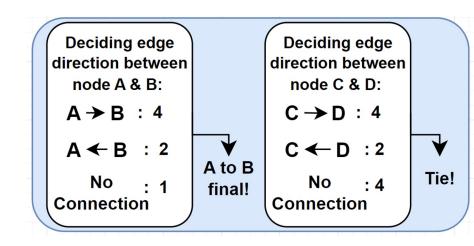
<u>Topological Divergence</u> (D_{Top}) helps compute the deviation in ordering of the predicted graph as compared to ground truth graph.

$$D_{top}(\hat{\pi}, A) = \sum_{i=1}^{n} \sum_{j: \hat{\pi}_i > \hat{\pi}_j} A_{ij}$$

Recent studies in LLM based causal discovery employs Structured Hamming
 Distance (SHD) for edge analysis, capturing missing and falsely directed edges.

Understanding the Majority Voting System

- Iterate over all node pairs for orientation.
- Majority vote from triplets guide orientation.
- Expert intervention in case of tiebreaking conflicts among edge orientations.
- GPT-4 with CoT prompt used for Tie-Breaking



Best of Both Worlds - Merging LLMs and Discovery Algorithms

 LLMs exhibit unknown failure modes leading to inaccurate performance therefore making them unreliable.

But how can their strengths be utilised while ensuring a principled approach to causal discovery?

 We propose pipelines for combining LLMs with causal discovery algorithms, by providing outputs of LLMs as priors. We focus on two types of discovery algorithms: Constraint and Score based methods.

Constraint Based Integration with LLMs

Causal order π from a triplet graph used for orienting undirected edges in Partial DAG.

To handle cases not covered by LLM output, we employ GPT-4 with CoT prompt for orientation.

Algorithm 2: Combining score based methods and experts to get $\hat{\pi}$ for a given set of variables.

- 1: **Input:** \mathcal{D} , variables $\{X_1, \ldots, X_n\}$, Expert \mathcal{E} , Score based method \mathcal{S} , *Prior* probability p.
- 2: **Output:** Estimated topological order $\hat{\pi}$ of $\{X_1, \ldots, X_n\}$.
- 3: Step (I) $\hat{\mathcal{G}} = \mathcal{E}(X_1, \dots, X_n)$
- 4: Step (II) Prior = level order traversal of $\hat{\mathcal{G}}$.
- 5: Step (II.I) If $\hat{\mathcal{G}}$ is cyclic, keep all the variables in a cycle at the same level in *Prior*.
- 6: Step (III) $\hat{\mathcal{G}} = \mathcal{S}(\mathcal{D}, Prior, Prior probability = p)$
- 7: Step (IV) $\hat{\pi}$ = topological ordering of $\hat{\mathcal{G}}$
- 8: return $\hat{\pi}$

Algorithm 1: Combining constraint based methods and experts to get $\hat{\pi}$ for a given set of variables.

- 1: **Input:** LLM topological ordering $\hat{\pi}$, Expert \mathcal{E}_{GPT4} , PC-CPDAG $\hat{\mathcal{G}}$
- 2: **Output:** Estimated topological order $\hat{\pi}_{final}$ of $\{X_1, \dots, X_n\}$.
- 3: **for** $(i j) \in \text{undirected-edges}(\hat{\mathcal{G}})$ **do**
- 4: If both the node i and j are in $\hat{\pi}$ and if $\hat{\pi}_i < \hat{\pi}_j$, orient (i-j) as $(i \to j)$ in $\hat{\mathcal{G}}$.
- Otherwise, use the expert \mathcal{E}_{GPT4} with CoT prompt to orient the edge (i j).
- 6: end for
- 7: $\hat{\pi}_{\text{final}} = \text{topological ordering of } \hat{\mathcal{G}}$
- 8: return $\hat{\pi}$

Score Based Integration with LLMs

Level order of causal graph returned by LLM is used as prior for CamML