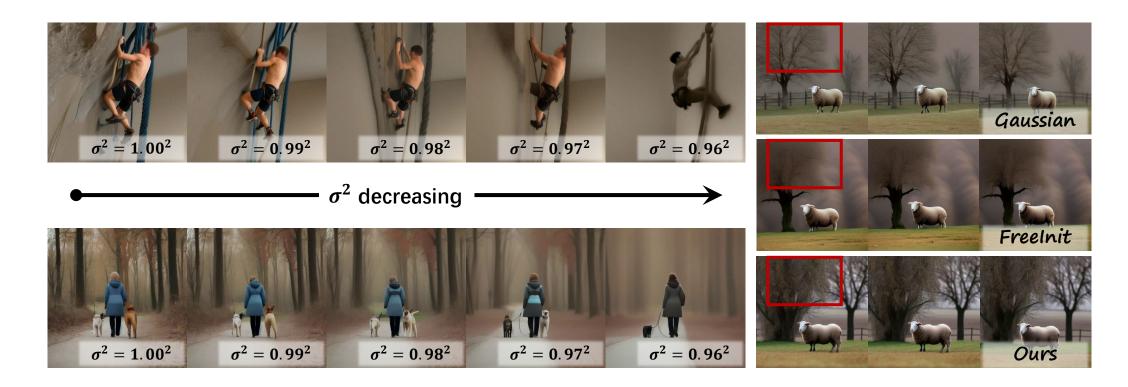


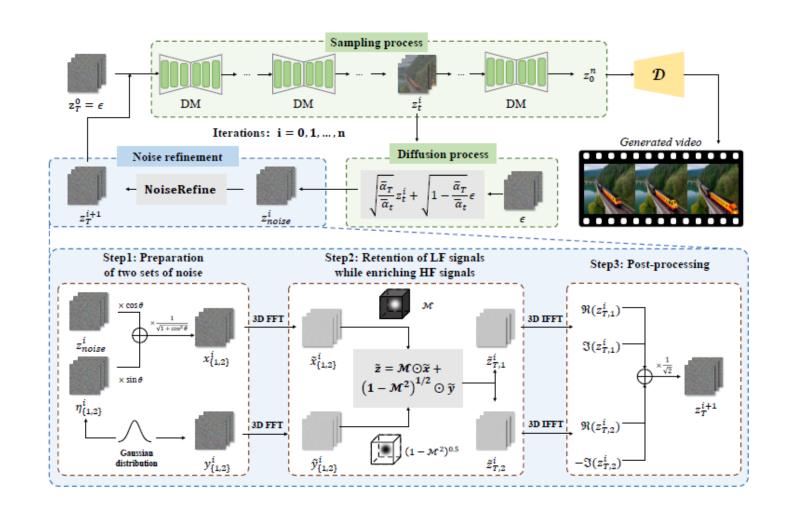
FreqPrior: Improving Video Diffusion Models with Frequency Filtering Gaussian Noise

Yunlong Yuan¹, Yuanfan Guo², Chunwei Wang², Wei Zhang², Hang Xu², Li Zhang¹


¹School of Data Science, Fudan University ²Noah's Ark Lab, Huawei

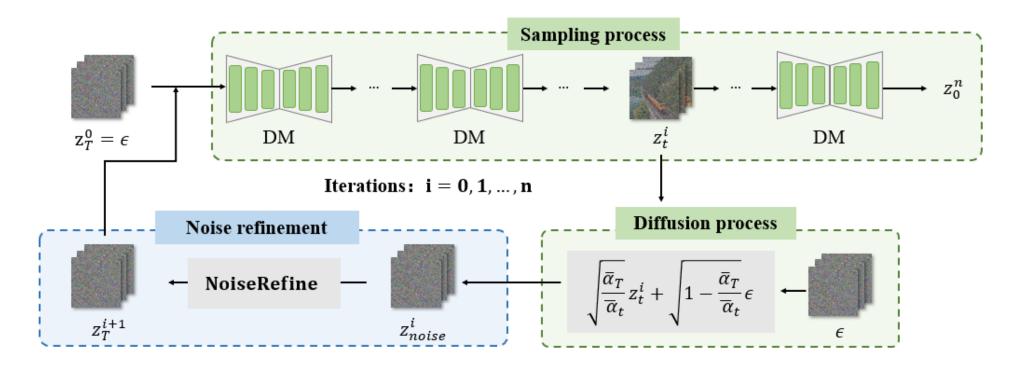
Noise priors of video diffusion models

Noise priors proposed by PYoCo [Ge et al. 2023] establish temporal correlations across frames. However, they require extensive training and cannot be applied to other pretrained video diffusion models directly.


Noise priors of video diffusion models

FreeInit [Wu et al. 2024] uses classical frequency filtering on the noise prior to enhance the temporal consistency, but the generated videos suffer from excessive smoothness, limited motion dynamics, and a lack of details.

Pipeline of FreqPrior


- sampling process
- diffusion process
- noise refinement

Sampling process and diffusion process

Sampling process: DDIM sampling [Song et al. 2021].

Diffusion process: diffuses the latent with initial noise ϵ at an intermediate timestep.

Noise refinement

Preparation of two sets of noise

We prepare two distinct sets of noise. One set is to convey low-frequency information:

$$x_1^i = \frac{1}{\sqrt{1 + \cos^2 \theta}} \left(\cos \theta \cdot z_{noise}^i + \sin \theta \cdot \eta_1^i \right), \qquad \eta_1^i \sim \mathcal{N}(0, I),$$

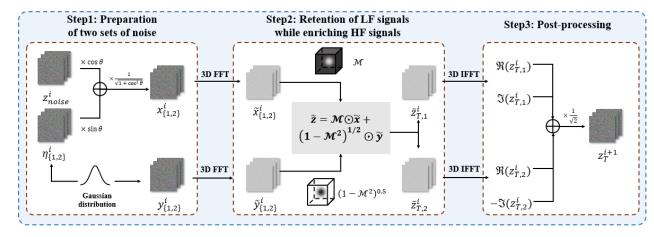
$$x_2^i = \frac{1}{\sqrt{1 + \cos^2 \theta}} \left(\cos \theta \cdot z_{noise}^i + \sin \theta \cdot \eta_2^i \right), \qquad \eta_2^i \sim \mathcal{N}(0, I).$$

The other set of noise is designed to provide high-frequency details: y_1^i and y_2^i are independent Gaussian noise.

Frequency filtering

We map the noise to the frequency domain:

$$\tilde{x}_{\{1,2\}}^i = \mathcal{F}_{3D}(x_{\{1,2\}}^i), \qquad \tilde{y}_{\{1,2\}}^i = \mathcal{F}_{3D}(y_{\{1,2\}}^i).$$


Then, we perform frequency filtering.

$$\tilde{z}_1^i = \mathcal{M} \odot \tilde{x}_1^i + (1 - \mathcal{M}^2)^{0.5} \odot \tilde{y}_1^i, \qquad \tilde{z}_2^i = \mathcal{M} \odot \tilde{x}_2^i + (1 - \mathcal{M}^2)^{0.5} \odot \tilde{y}_2^i.$$

Post-processing

After filtering, the frequency features are mapped back into the latent space, followed by post-processing to form the new noise prior z_T^{i+1} :

$$z_T^{i+1} = \frac{1}{\sqrt{2}} \left(\Re \left(z_{T,1}^i \right) + \Im \left(z_{T,1}^i \right) + \Re \left(z_{T,2}^i \right) - \Im \left(z_{T,2}^i \right) \right), \qquad z_{T,\{1,2\}}^i = \mathcal{F}_{3D}^{-1} \left(\tilde{z}_{\{1,2\}}^i \right).$$

Theoretical analysis

Assumption After the diffusion process, z_{noise} follows a standard Gaussian distribution $\mathcal{N}(0,I)$.

Theorem Given a DFT matrix or multi-dimension DFT matrix $F \in C^{N \times N}$, with A and B are its real part and imaginary part respectively, it holds that AB = BA = 0 and $A^2 + B^2 = NI$.

Considering frame, height and width dimensions, we can infer the distribution of FreeInit [Wu et al. 2024] noise prior and our method:

FreeInit:
$$z \sim \mathcal{N}(0, (I-P)^2 + P^2), \qquad P = \frac{1}{N}(A\Lambda A + B\Lambda B).$$

FreqPrior:
$$z \sim \mathcal{N}\left(0, I - \frac{2\cos^2\theta}{1 + \cos^2\theta}Q^2\right), \qquad Q = \frac{1}{N}(A\Lambda B + B\Lambda A).$$

Theoretical results and numerical results

Theoretical results Under the condition of the same low-pass filter \mathcal{M} , we can derive:

$$||I - \Sigma_{FreqPrior}||_F \le \frac{\cos^2 \theta}{1 + \cos^2 \theta} ||I - \Sigma_{FreeInit}||_F.$$

Numerical results

Prior	(16, 20, 20)		(16, 30, 30)		(16, 40, 40)	
	Butterworth	Gaussian	Butterworth	Gaussian	Butterworth	Gaussian
Mixed	154.9193		232.3790		309.8387	
FreeInit Ours	$\begin{array}{c} 3.8230 \\ 8.5071 \times 10^{-28} \end{array}$	$8.5878 \\ 7.7218 \times 10^{-28}$	$5.7001 \\ 1.4002 \times 10^{-26}$	$12.8817 \\ 1.2656 \times 10^{-26}$	$7.6026 \\ 2.7342 \times 10^{-26}$	$17.1756 \\ 2.4140 \times 10^{-26}$

Experimental results

Base model	Noise prior	Prior finding	Generation	Quality	Semantic	Total	Inference time
	Gaussian	/	25 steps	69.50	54.92	66.58	27.73s
	Mixed	/	25 steps	_	_	_	_
VideoCrafter	Progressive	/	25 steps	_	_	_	_
Video ciurtoi	Gaussian		3*25 steps	69.75	58.10	67.42	83.09s
	FreeInit	2 full sampling	25 steps	70.62	58.97	68.29	83.18s
	Ours	2 partial sampling	25 steps	70.63	61.33	68.77	<u>63.67s</u>
	Gaussian	/	50 steps	73.13	65.69	71.64	19.24s
	Mixed	/	50 steps	_	_	_	_
ModelScope	Progressive	/	50 steps	_	_	_	_
Wiodelscope	Gaussian		3*50 steps	73.25	66.31	71.87	57.72s
	FreeInit	2 full sampling	50 steps	73.61	67.24	72.34	57.73s
	Ours	2 partial sampling	50 steps	74.04	69.06	73.04	<u>44.88s</u>
	Gaussian	/	25 steps	79.56	69.03	77.45	23.34s
	Mixed	/	25 steps	_	_	_	_
AnimateDiff	Progressive	/	25 steps	_	_	_	_
7 Milliace Dill	Gaussian		3*25 steps	79.49	69.71	77.54	70.22s
	FreeInit	2 full sampling	25 steps	79.58	68.85	77.43	70.45s
	Ours	2 partial sampling	25 steps	80.05	70.37	78.11	<u>54.05s</u>

Qualitative comparisons

a person drinking coffee in a cafe

a person walking in the snowstorm

Qualitative comparisons

a boat sailing smoothly on a calm lake

A happy fuzzy panda playing <mark>guitar</mark> nearby a campfire, snow mountain in the background

Qualitative comparisons

An oil painting of a couple in formal evening wear going home get caught in a heavy downpour with umbrellas

A cat wearing sunglasses at a pool

Thank you!

FreqPrior: Improving Video Diffusion Models with Frequency Filtering Gaussian Noise

Project page:

https://github.com/fudan-zvg/FreqPrior