

Reconstructive Visual Instruction Tuning

Haochen Wang^{1,2}, Anlin Zheng², Yucheng Zhao⁴, Tiancai Wang⁴, Ge Zheng⁵ Xiangyu Zhang^{4,5}, and Zhaoxiang Zhang^{1,2}

¹CASIA, ²UCAS, ³HKU, ⁴MEGVII Technology, ⁵StepFun

https://haochen-wang409.github.io/ross/

(a) **ROSS**^R-Pixel

,-----

(b) **ROSS**^R-Latent

(c) **ROSS**^R-Latent2Pixel

Vanilla regression

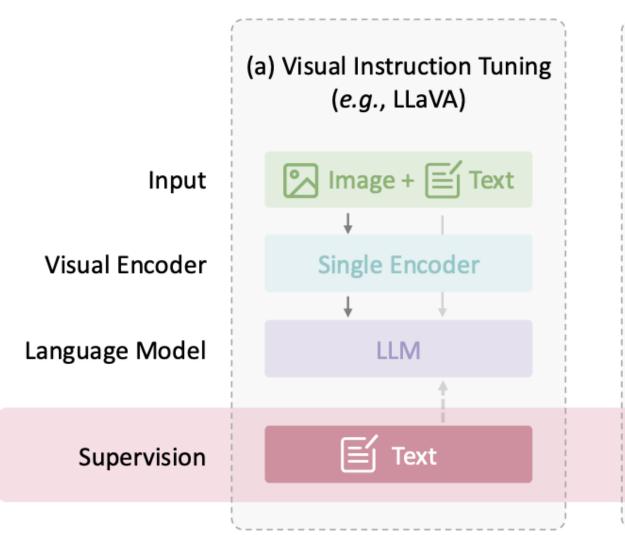
performs bad.

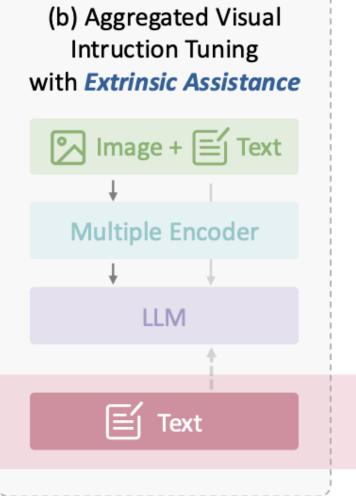
Self-Attention

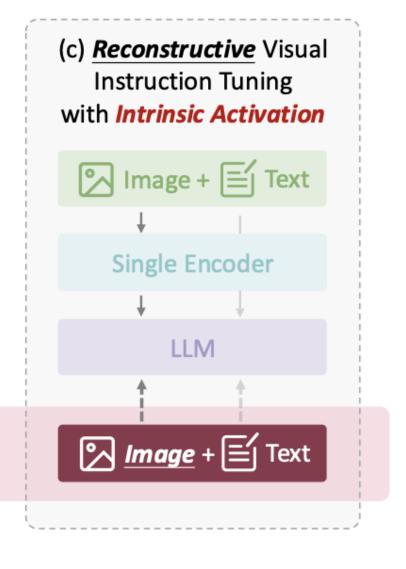
1

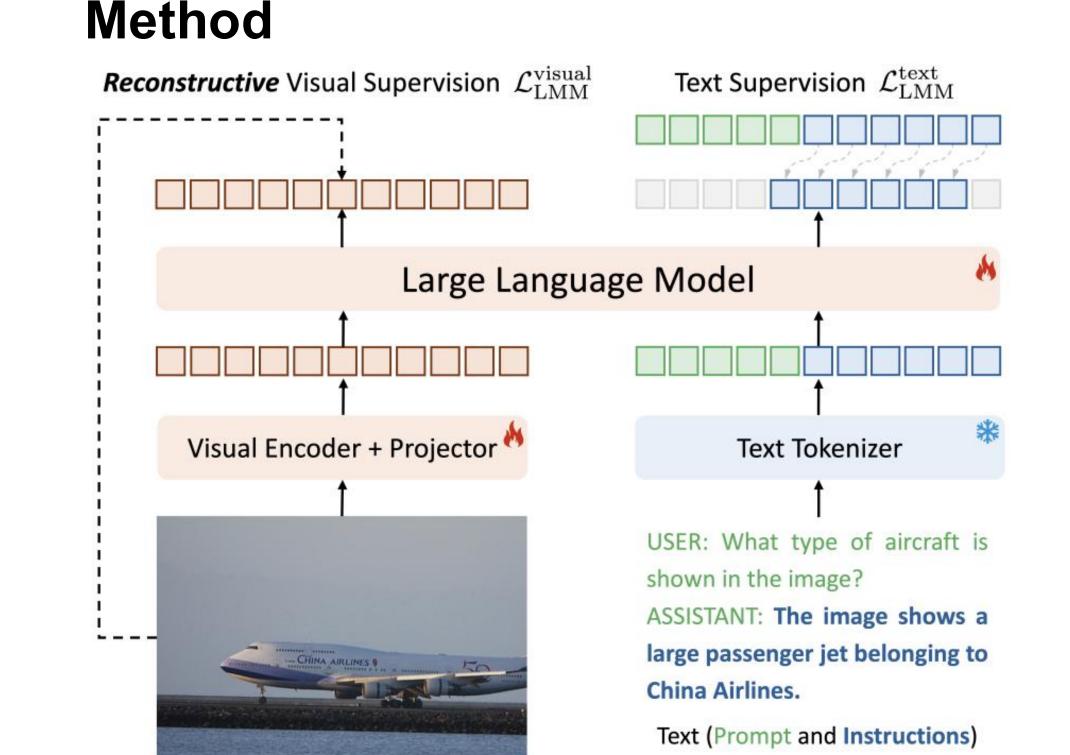
(b) The denoiser.

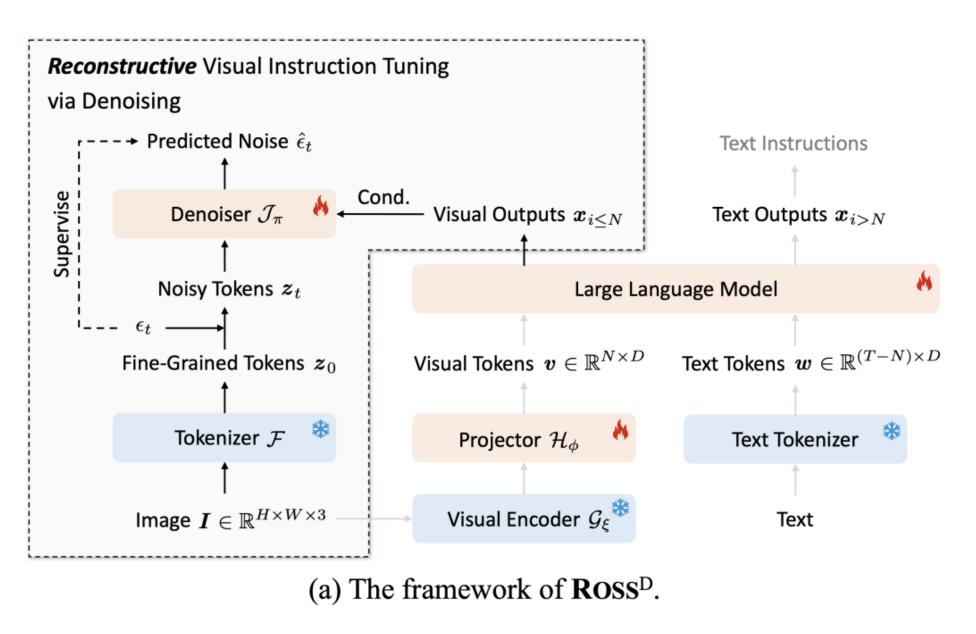
Visual Outputs $oldsymbol{x}_{i < N}$


Predicted Image


Projector \mathcal{J}_{π}


Visual Outputs $oldsymbol{x}_{i < N}$


Motivation



- Typical visual instruction tuning approaches, e.g., LLaVA, follow a **LLM-centric** design that solely leverage text supervision.
- Aggregated visual instruction tuning alternatives, e.g., Cambrian-1 and EAGLE, leverage extrinsic assistance via **combining several visual experts**, requiring a careful selection of visual experts.
- Our **Ross** designs extra **vision-centric reconstructive supervision** as intrinsic activation. In this way, LMMs are required to preserve every detail of input images, thereby enhancing multimodal comprehension capabilities and reducing hallucinations.
- With a single SigLIP as the visual encoder, **Ross**-7B achieves 57.3 on HallusionBench and 54.7 on MMVP.

High-level idea:

Supervising visual outputs using original images.

Final pipeline:

Using a small denoiser to project visual outputs back to pixel space.

Experiments

Model	POPE	Hallu.	$\mathbf{M}\mathbf{M}\mathbf{B}^{\mathrm{EN}}$	$\mathbf{MMB}^{\mathrm{CN}}$	$\boldsymbol{SEED^{I}}$	MMMU	MMVP	GQA	AI2D
GPT-4V-1106 (OpenAI, 2023a)	75.4	65.8 [‡]	75.8	75.1 [‡]	71.6	53.8	50.0	36.8	78.2
Gemini-1.5 Pro (Team et al., 2023)	_	_	73.6	_	70.7	47.9	_	_	_
MM-1-8B (McKinzie et al., 2024)	86.6	_	72.3	_	69.9	37.0	_	72.6	_
Mini-Gemini-8B (Li et al., 2024f)	_	_	72.7	_	73.2	37.3	18.7	64.5	73.5
DeepSeek-VL-7B (Lu et al., 2024)	85.8^{\ddagger}	44.1^{\ddagger}	73.2	72.8	70.4	36.6	_	_	64.9^{\ddagger}
Cambrian-1-8B (Tong et al., 2024a)	87.4^{\ddagger}	48.7^{\ddagger}	75.9	68.9^{\ddagger}	74.7	42.7	51.3	64.6	73.0
Ross-7B	88.3	57.1	79.1	77.1	73.6	46.6	56.7	65.5	79.3
Base LLM: Vicuna-7B-v1.5									
LLaVA-v1.5-7B [‡] (Liu et al., 2024a)		47.5	65.5	58.5	66.0	34.4	20.0	62.0	55.4
LLaVA-v1.6-7B [‡] (Liu et al., 2024b)	86.5	35.8	67.4	60.1	70.2	35.8	37.3	64.2	67.1
$Ross-7B_{vicuna}$	88.2	55.2	67.7	61.3	67.6	36.9	39.3	63.7	69.3
Base LLM: Vicuna-13B-v1.5									
LLaVA-v1.5-13B [‡] (Liu et al., 2024a)	82.5	44.9	68.8	63.6	68.2	36.6	32.0	63.3	60.8
LLaVA-v1.6-13B [‡] (Liu et al., 2024b)	86.2	36.7	70.0	64.1	71.9	36.2	35.3	65.4	72.4
Mini-Gemini-13B (Li et al., 2024f)	_	_	68.6	_	73.2	37.3	19.3	63.7	70.1
Cambrian-1-13B (Tong et al., 2024a)	85.7^{\ddagger}	54.0^{\ddagger}	<i>75.7</i>	65.9^{\ddagger}	74.4	40.0	41.3	64.3	73.6
Ross-13B _{vicuna}		56.4	73.6	67.4	71.1	41.3	44.7	65.2	73.8

Comparison with state-of-the-art alternatives.

Language Model	$\mathcal{L}_{ ext{LMM}}^{ ext{visual}}$	POPE	Hallu.	MMVP	ChartQA	OCRBench	MMB^{EN}				
Visual Encoder: CLIP-ViT-L/14@336											
Vicuna-7B-v1.5	_	86.3	52.5	28.0	32.9	339	67.0				
	\checkmark	87.2 ↑ 0.9	55.8 ↑ 3.3	36.0 ↑ 8.0	39.8 ↑ 6.9	350 ↑ 11	67.6 ↑ 0.6				
Qwen2-7B-Instruct	_	87.9	55.0	29.3	34.0	363	73.8				
	\checkmark	88.4 ↑ 0.5	56.7 ↑ 1.7	42.0 ↑ 12.7	37.1 ↑ 3.1	381 ↑ 18	75.2 ↑ 1.4				
Visual Encoder: SigLIP-ViT-SO400M/14@384											
Vicuna-7B-v1.5	_	86.0	50.4	27.3	36.2	354	64.5				
	\checkmark	86.8 ↑ 0.8	53.2 ↑ 2.8	38.0 ↑ 10.7	41.6 ↑ 5.4	365 ↑ 11	65.7 ↑ 1.2				
Qwen2-7B-Instruct	_	88.5	57.3	40.7	44.4	432	76.3				
	\checkmark	88.7 ↑ 0.2	58.2 ↑ 0.9	49.3 ↑ 8.6	46.3 ↑ 1.9	448 ↑ 16	76.9 ↑ 0.6				

Effectiveness of Ross with different visual encoders and LLMs.

Reconstruction results after finetuning the denoiser on ImageNet-1K.