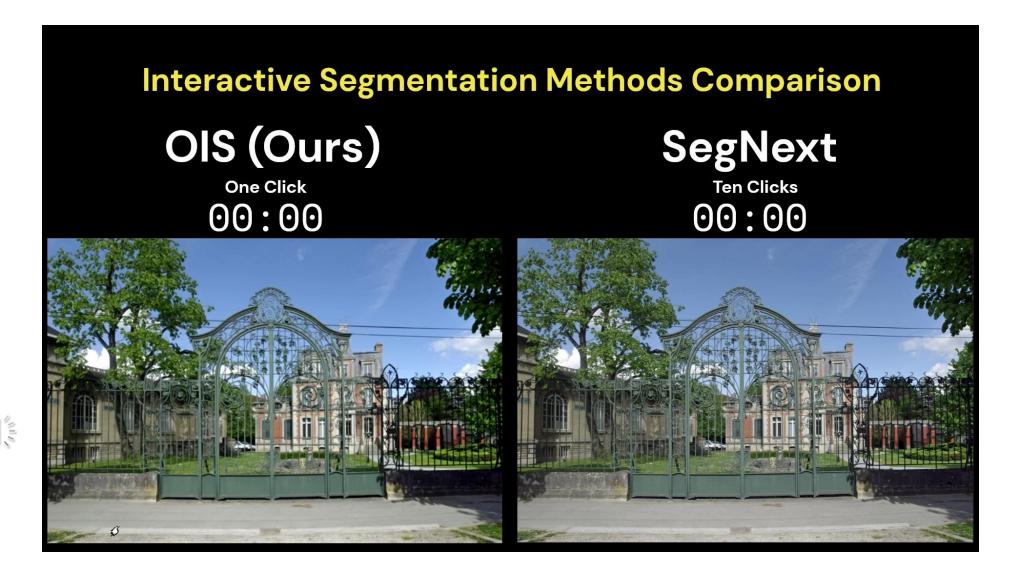




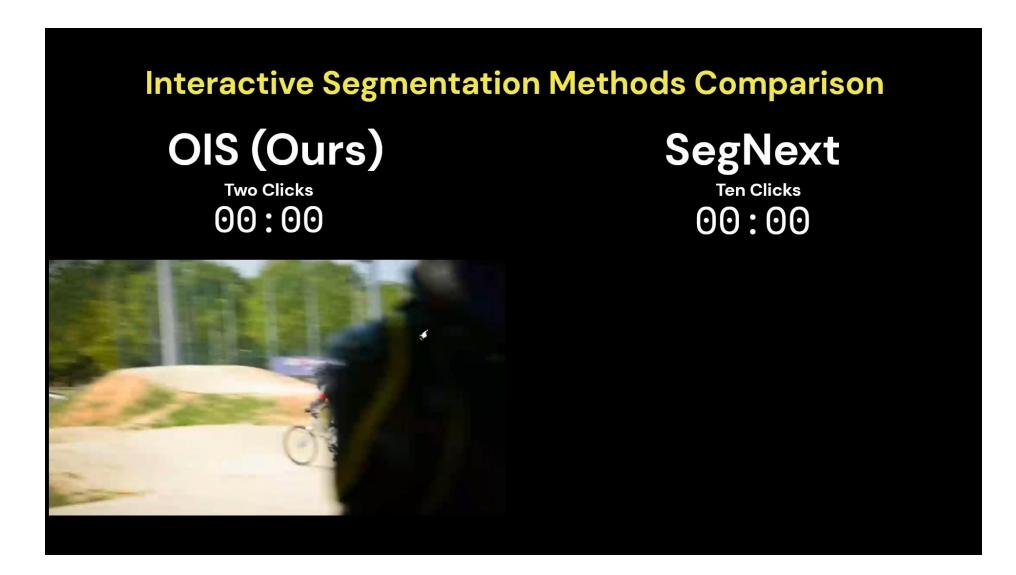
# Order-aware Interactive Image Segmentation

Bin Wang<sup>1,2</sup>, Anwesa Choudhuri<sup>1</sup>, Meng Zheng<sup>1</sup>, Zhongpai Gao<sup>1</sup>, Benjamin Planche<sup>1</sup>, Andong Deng<sup>1,3</sup>, Qin Liu<sup>4</sup>, Terrence Chen<sup>1</sup>, Ulas Bagci<sup>2</sup>, Ziyan Wu<sup>1</sup>


<sup>1</sup>United Imaging Intelligence, Boston MA, USA
<sup>2</sup>Northwestern University, Chicago IL, USA
<sup>3</sup>University of Central Florida, Orlando FL, USA
<sup>4</sup>University of North Carolina at Chapel Hill, Chapel Hill NC, USA





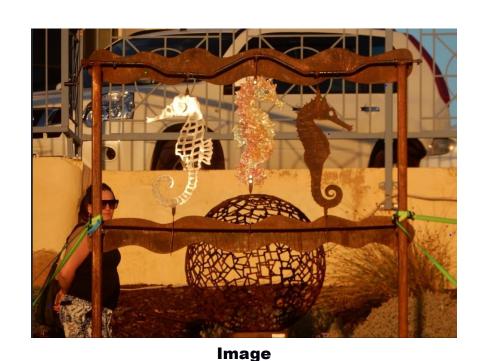



# **Interactive Segmentation Demo**





# **Interactive Segmentation Demo**






### **Motivations**



Supplement 3D information into 2D interactive image segmentation`





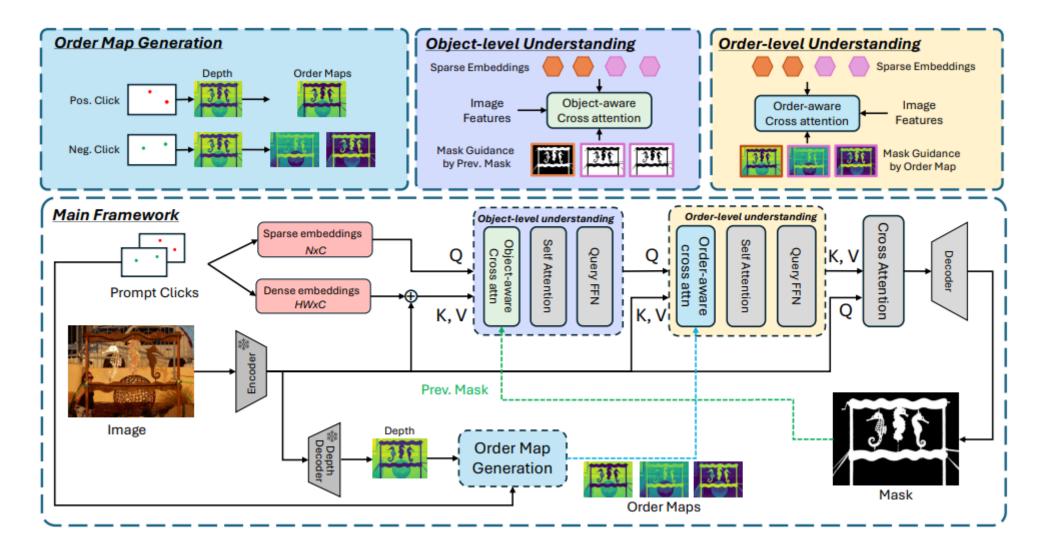
Can we combine prompt click to select order?



Depth contains strong order information of object in 3D space



### Formulate 3D information into Order Map


• We define the order map as the relative distances between each pixel in the image and the user-selected object or region







# **Our Order-aware Interactive Segmentation (OIS) framework**







# Visualization of attention weights before and after applying order-aware attention





# UNITED IMAGING Intelligence

### **Experiments**

#### Datasets:

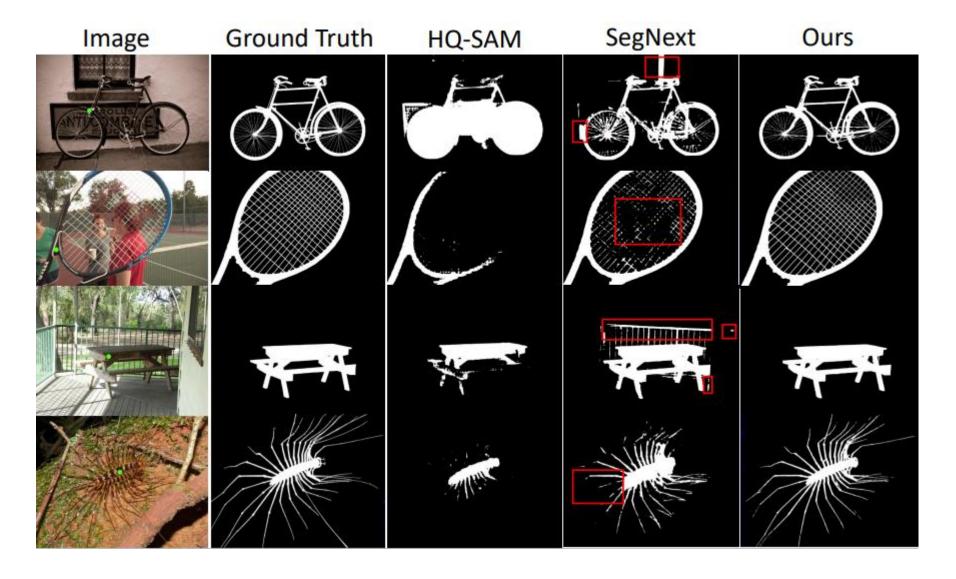
- public <u>HQSeg44K</u> dataset
- public <u>DAVIS</u> dataset

#### Compared Methods:

 HR-SAM, HR-SAM++, SegNext (CVPR2024), HQ-SAM (NeurIPS2023), SAM (ICCV2023), InterFormer (ICCV2023), SimpleClick (ICCV2023), FocalClick (CVPR2022), RITM



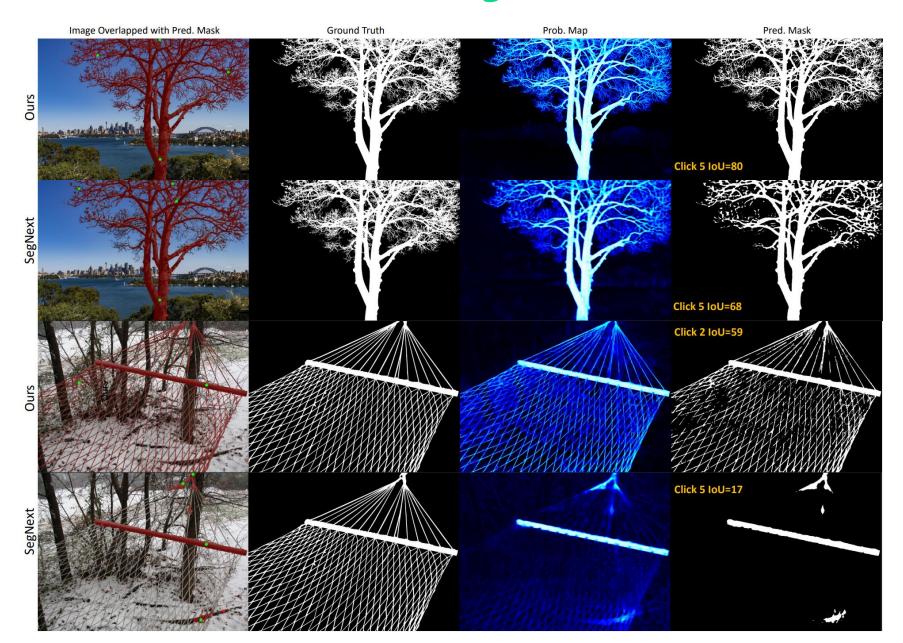
# Intelligence


### **Evaluation Metrics**

- Number of Clicks (NoC)
  - NoC85, NoC90, and NoC95, represent the number of clicks required to achieve mloU thresholds of 90% and 95%
- mean Interaction-over-Union (mIoU)
  - 1-mloU and 5-mloU, denote the average loU achieved after 1, 5, or 10 consecutive clicks
- Number of Failure (NoF)
   the number of cases requiring more than 20 clicks to achieve 90% IoU
- Seconds Per Click (SPC)
   SPC measures the time efficiency, indicating how many seconds each click requires on average
- SAT Latency
   total latency for the Segment Anything Task (prompt with grid of 16×16 points)






# **Results – Qualitative on HQSeg44K**





# UNITED IMAGING Intelligence

# **Results – Qualitative on HQSeg44K**







# **Results – Quantitative on HQSeg44K**

| Methods                            | Backbone                               | NoC90↓ | NoC95↓ | 1-mIoU↑ | 5-mIoU↑ | NoF95↓ |
|------------------------------------|----------------------------------------|--------|--------|---------|---------|--------|
| RITM (Sofiiuk et al., 2022)        | HRNet32 <sub>400</sub>                 | 10.01  | 14.58  | 36.03   | 77.72   | 910    |
| FocalClick (Chen et al., 2022)     | ${\bf SegF\text{-}B3\text{-}S2}_{256}$ | 8.12   | 12.63  | 62.89   | 84.63   | 835    |
| FocalClick (Chen et al., 2022)     | $SegF\text{-}B3\text{-}S2_{384}$       | 7.03   | 10.74  | 61.92   | 85.45   | 649    |
| SimpleClick (Liu et al., 2023)     | $ViT-B_{448}$                          | 7.47   | 12.39  | 65.54   | 85.11   | 797    |
| InterFormer (Huang et al., 2023)   | ViT-B <sub>1024</sub>                  | 7.17   | 10.77  | 64.40   | 82.62   | 658    |
| SAM (Kirillov et al., 2023)        | $ViT-B_{1024}$                         | 7.46   | 12.42  | 45.08   | 86.16   | 811    |
| EifficientSAM (Xiong et al., 2024) | $ViT$ - $T_{1024}$                     | 10.11  | 14.60  | -       | 77.90   | -      |
| EifficientSAM (Xiong et al., 2024) | $ViT$ - $S_{1024}$                     | 8.84   | 13.18  | -       | 79.01   | -      |
| MobileSAM (Zhang et al., 2023a)    | $ViT$ - $T_{1024}$                     | 8.70   | 13.83  | 53.20   | 81.98   | 951    |
| HQ-SAM (Ke et al., 2024)           | $ViT-B_{1024}$                         | 6.49   | 10.79  | 42.38   | 89.85   | 671    |
| HR-SAM (Huang et al., 2024)        | $ViT-B_{1024}$                         | 5.42   | 9.27   | -       | 91.81   | -      |
| HR-SAM++ (Huang et al., 2024)      | $ViT-B_{1024}$                         | 5.32   | 9.18   | -       | 91.84   | -      |
| SegNext (Liu et al., 2024a)        | $ViT-B_{1024}$                         | 5.32   | 9.42   | 81.79   | 91.75   | 583    |
| Ours                               | $ViT-B_{1024}$                         | 3.95   | 7.50   | 89.40   | 93.78   | 485    |
| EifficientSAM (Xiong et al., 2024) | ViT-T <sub>2048</sub>                  | 9.47   | 13.13  | -       | 74.20   | -      |
| EifficientSAM (Xiong et al., 2024) | $ViT\text{-}S_{2048}$                  | 8.27   | 11.97  | -       | 74.91   | -      |
| HR-SAM (Huang et al., 2024)        | $	ext{ViT-B}_{2048}$                   | 4.37   | 7.86   | -       | 93.34   | -      |
| HR-SAM++ (Huang et al., 2024)      | $	ext{ViT-B}_{2048}$                   | 4.20   | 7.79   | -       | 93.32   | -      |
| Ours                               | $	ext{ViT-B}_{2048}$                   | 3.47   | 6.63   | 89.57   | 94.45   | 398    |



# UNITED IMAGING Intelligence

### **Results – Qualitative on DAVIS**







# **Results – Quantitative on DAVIS**

| Methods                            | Backbone                               | NoC90↓ | NoC95↓ | 1-mIoU↑ | 5-mIoU↑ | NoF95↓ |
|------------------------------------|----------------------------------------|--------|--------|---------|---------|--------|
| RITM (Sofiiuk et al., 2022)        | HRNet32 <sub>400</sub>                 | 5.34   | 11.45  | 72.53   | 89.75   | 139    |
| FocalClick (Chen et al., 2022)     | ${\bf SegF\text{-}B3\text{-}S2}_{256}$ | 5.17   | 11.42  | 76.28   | 90.82   | 155    |
| FocalClick (Chen et al., 2022)     | $SegF\text{-}B3\text{-}S2_{384}$       | 4.90   | 10.40  | 76.35   | 91.22   | 123    |
| SimpleClick (Liu et al., 2023)     | $	ext{ViT-B}_{448}$                    | 5.06   | 10.37  | 72.90   | 90.73   | 107    |
| InterFormer (Huang et al., 2023)   | ViT-B <sub>1024</sub>                  | 5.45   | 11.88  | 64.40   | 87.79   | 150    |
| SAM (Kirillov et al., 2023)        | $ViT-B_{1024}$                         | 5.14   | 10.74  | 48.66   | 90.95   | 154    |
| MobileSAM (Zhang et al., 2023a)    | $ViT$ - $T_{1024}$                     | 5.83   | 12.74  | 61.69   | 89.18   | 196    |
| EifficientSAM (Xiong et al., 2024) | $ViT$ - $T_{1024}$                     | 7.37   | 14.28  | -       | 85.26   | -      |
| EifficientSAM (Xiong et al., 2024) | $ViT$ - $S_{1024}$                     | 6.37   | 12.26  | -       | 87.55   | -      |
| HQ-SAM (Ke et al., 2024)           | $ViT$ - $B_{1024}$                     | 5.26   | 10.00  | 45.75   | 91.77   | 136    |
| HR-SAM (Huang et al., 2024)        | $ViT$ - $B_{1024}$                     | 4.82   | 11.86  | -       | 91.34   | -      |
| HR-SAM++ (Huang et al., 2024)      | $ViT$ - $B_{1024}$                     | 5.02   | 11.64  | -       | 91.25   | -      |
| SegNext (Liu et al., 2024a)        | $ViT$ - $B_{1024}$                     | 4.43   | 10.73  | 85.97   | 91.87   | 123    |
| Ours                               | $ViT$ - $B_{1024}$                     | 3.80   | 8.59   | 87.29   | 92.76   | 114    |
| EifficientSAM (Xiong et al., 2024) | ViT-T <sub>2048</sub>                  | 8.00   | 14.37  | -       | 84.10   | -      |
| EifficientSAM (Xiong et al., 2024) | $ViT\text{-}S_{2048}$                  | 6.86   | 12.49  | -       | 85.17   | -      |
| HR-SAM (Huang et al., 2024)        | $ViT-B_{2048}$                         | 4.22   | 8.83   | -       | 92.63   | -      |
| HR-SAM++ (Huang et al., 2024)      | $	ext{ViT-B}_{2048}$                   | 4.12   | 8.72   | -       | 92.73   | -      |
| Ours                               | $	ext{ViT-B}_{2048}$                   | 3.48   | 8.42   | 88.05   | 92.90   | 105    |





# **Results – Efficiency Analysis**

 Our model achieves the best balance, offering low latency with superior segmentation accuracy

| Methods       | Parameters (M) | SPC (ms) ↓ | SAT Latency (s) ↓ | NoC90↓      | 5-mIoU↑ |
|---------------|----------------|------------|-------------------|-------------|---------|
| SimpleClick   | 96.46          | 55         | 81.3              | 7.47        | 85.11   |
| <b>HQ-SAM</b> | 94.81          | 10         | 5.1               | 6.49        | 89.85   |
| SegNext       | 113.79         | 58         | 20.6              | <u>5.32</u> | 91.75   |
| Ours          | 107.88         | <u>31</u>  | <u>9.2</u>        | 3.95        | 93.78   |



# **Results – Ablation Study**



#### **DAVIS Dataset**

| Methods    | NoC90↓       | 5-mIoU ↑      | NoF95↓ |
|------------|--------------|---------------|--------|
| Full       | 3.80         | 92.76         | 114    |
| w/o order  | 4.84 (+1.04) | 91.61 (-1.15) | 171    |
| w/o object | 3.92 (+0.12) | 92.52 (-0.24) | 125    |
| w/o sparse | 5.18 (+1.38) | 89.81 (-2.95) | 167    |
| w/o dense  | 4.63 (+0.83) | 91.31 (-1.45) | 188    |

#### HQSeg44K Dataset

| Methods    | <b>NoC90</b> ↓ | 5-mIoU ↑      |
|------------|----------------|---------------|
| Full       | 3.95           | 93.78         |
| w/o order  | 4.87 (+0.98)   | 92.49 (-1.29) |
| w/o object | 4.23 (+0.28)   | 93.28 (-0.5)  |
| w/o sparse | 5.23 (+1.28)   | 90.80 (-2.98) |
| w/o dense  | 4.97 (+1.02)   | 91.75 (-2.03) |



# JNITED IMAGING Intelligence

### **Conclusion**

- Introduced Order-Aware Interactive Segmentation (OIS), which incorporates 3D spatial context through the concept of order into 2D interactive segmentation.
- Proposed order-aware attention enables the model to better distinguish objects based on their relative depths.
- Introduced object-aware attention to enhance our model's ability to differentiate objects within the same depth level.
- Integrated user clicks using both sparse and dense representations, improving segmentation accuracy and computational efficiency.
- Experimental results validated that OIS significantly improves segmentation accuracy and speed as compared to prior methods.







