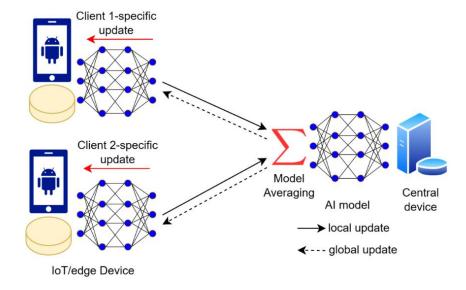
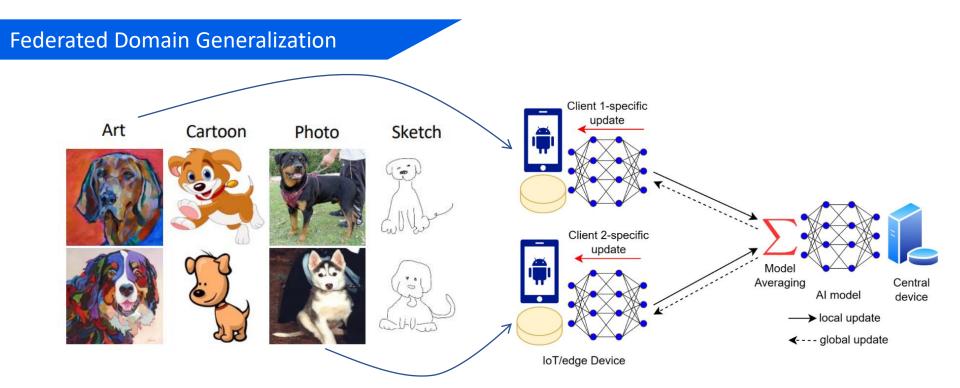
Federated Domain Generalization with Data-free On-server Matching Gradient

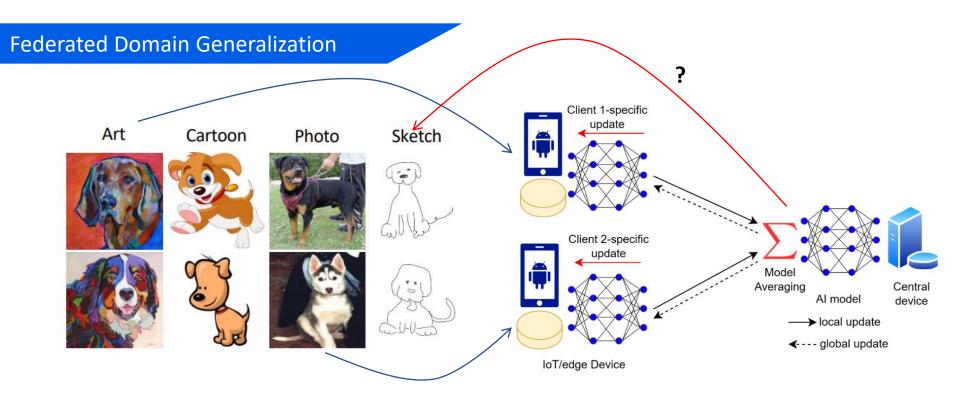
Trong-Binh Nguyen¹, Minh-Duong Nguyen¹, Jinsun Park¹, Quoc-Viet Pham², Won Joo Hwang¹

¹Pusan National University, Republic of Korea; ²Trinity College Dublin, Ireland




Overview

Federated Domain Generalization

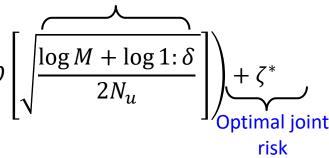


Overview

■ Data collected from different domains (e.g., Art, Photo, Sketch), client models trained on different domains → heterogeneous distributions.

Overview

- Data collected from different domains (e.g., Art, Photo, Sketch), client models trained on different domains → heterogeneous distributions.
- Federated Domain Generalization (FDG) focuses on the domain generalization problem in FL, aiming to ensure that performance on test domains is as good as performance on training domains.


Generalization gap on an unseen domain
$$\mathcal{D}_T$$

$$\mathcal{E}(\theta; \mathcal{D}_{\mathcal{T}}) \leq \sum_{u \in \mathcal{U}_{\mathcal{S}}} \rho_{u} \left(\mathcal{E}(\theta; \mathcal{D}_{u}) + \sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{O}\left[\sqrt{\frac{\log M + \log 1 : \delta}{2N_{u}}}\right] \right)$$
Local risk

Domain Divergence

$$+ \sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{C}$$

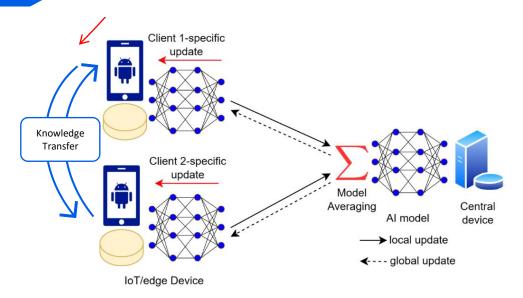
Gap due to finite sampling

Generalization gap on an unseen domain $\mathcal{D}_{\mathcal{T}}$

$$\mathcal{E}(\theta; \mathcal{D}_{\mathcal{T}}) \leq \sum_{u \in \mathcal{U}_{\mathcal{S}}} \rho_{u} \left(\mathcal{E}(\theta; \mathcal{D}_{u}) + \sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{O}\left[\sqrt{\frac{\log M + \log 1 : \delta}{2N_{u}}} \right] \right)$$

$$\text{Local risk}$$

Domain Divergence

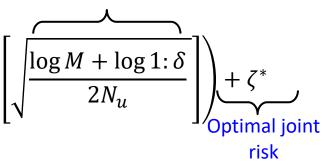

$$+\sum_{v\in\mathcal{U}_{\mathcal{T}}}^{v\neq u}d_{\mathcal{H}}(\mathcal{D}_{u},\mathcal{D}_{v})+\mathcal{O}$$

Gap due to finite sampling

$$\left[\sqrt{\frac{\log M + \log 1 : \delta}{2N_u}}\right] + \zeta^*$$
Optimal joint risk

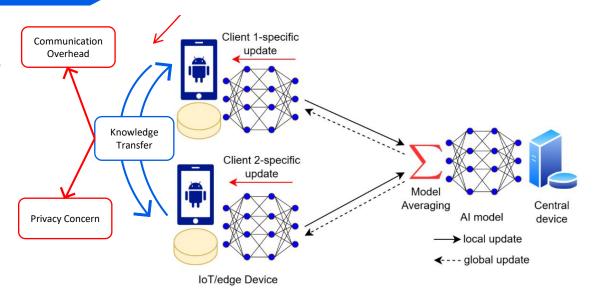
Issues of Conventional DG approaches to FDG

Reduce the domain divergence, i.e., minimizing the distance between domains' data.


Generalization gap on an unseen domain $\mathcal{D}_{\mathcal{T}}$

$$\mathcal{E}(\theta; \mathcal{D}_{\mathcal{T}}) \leq \sum_{u \in \mathcal{U}_{\mathcal{S}}} \rho_{u} \left(\mathcal{E}(\theta; \mathcal{D}_{u}) + \sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{O}\left[\sqrt{\frac{\log M + \log 1 : \delta}{2N_{u}}}\right] \right)$$
Local risk

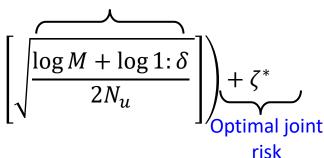
Domain Divergence


$$-\sum_{v\in\mathcal{U}_{\mathcal{T}}}^{v\neq u}d_{\mathcal{H}}(\mathcal{D}_{u},\mathcal{D}_{v})+\mathcal{O}$$

Gap due to finite sampling

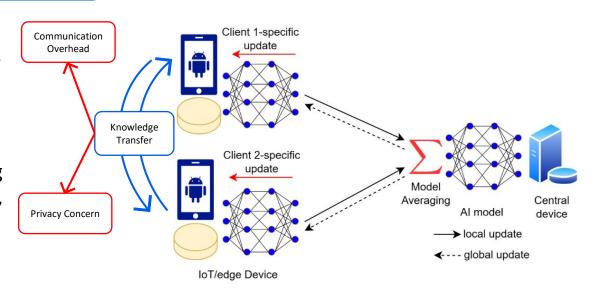
Issues of Conventional DG approaches to FDG

- Reduce the domain divergence, i.e., minimizing the distance between domains' data.
- Require data accessibility among users \rightarrow communication overhead, privacy protection.


Generalization gap on an unseen domain $\mathcal{D}_{\mathcal{T}}$

$$\mathcal{E}(\theta; \mathcal{D}_{\mathcal{T}}) \leq \sum_{u \in \mathcal{U}_{\mathcal{S}}} \rho_{u} \left(\mathcal{E}(\theta; \mathcal{D}_{u}) + \sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{O}\left[\sqrt{\frac{\log M + \log 1 : \delta}{2N_{u}}}\right] \right)$$
Local risk

Domain Divergence


$$-\sum_{v \in \mathcal{U}_{\mathcal{T}}}^{v \neq u} d_{\mathcal{H}}(\mathcal{D}_{u}, \mathcal{D}_{v}) + \mathcal{O}$$

Gap due to finite sampling

Issues of Conventional DG approaches to FDG

- Reduce the domain divergence, i.e., minimizing the distance between domains' data.
- Require data accessibility among users \rightarrow communication overhead, privacy protection.

How to make the models trained on heterogeneous network domains scalable and generalizable to new/unseen domains in the distributed network settings?

FDG via On-Server Optimization

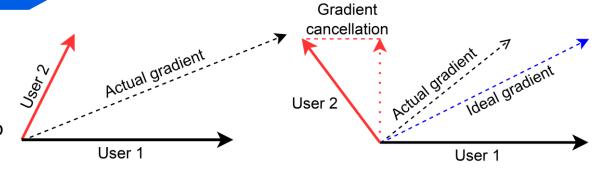
On-Server Optimization

$$\arg\min\sum_{u\in\mathcal{U}_S}\rho_u\left(\mathcal{E}(\theta;\mathcal{D}_u)+\sum_{v\in\mathcal{U}_S}^{v\neq u}d_{\mathcal{H}}\big(g(\theta;\mathcal{D}_u)\,,g(\theta;\mathcal{D}_v)\big)\right)$$
 Local Gradients

- Exploit local gradient trajectories at the server to estimate the domain divergence.
- Identify an optimal aggregated gradient for achieving domain invariance
 → no need for data exchange.

>

FDG via On-Server Optimization


On-Server Optimization

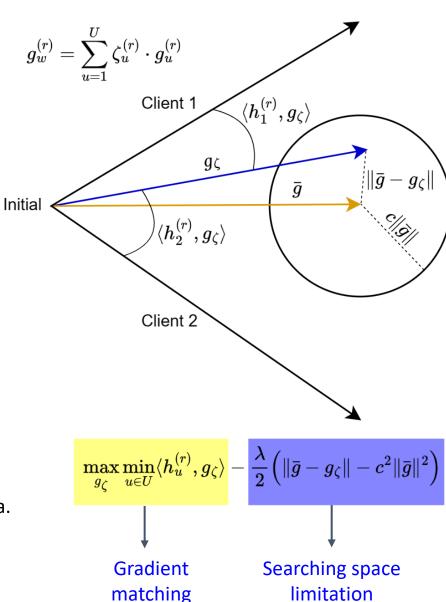
$$\arg\min\sum_{u\in\mathcal{U}_S}\rho_u\left(\mathcal{E}(\theta;\mathcal{D}_u)+\sum_{v\in\mathcal{U}_S}^{v\neq u}d_{\mathcal{H}}\big(g(\theta;\mathcal{D}_u)\,,g(\theta;\mathcal{D}_v)\big)\right)$$
 Local Gradients

- Exploit local gradient trajectories at the server to estimate the domain divergence.
- Identify an optimal aggregated gradient for achieving domain invariance
 → no need for data exchange.

Gradient Matching Motivation

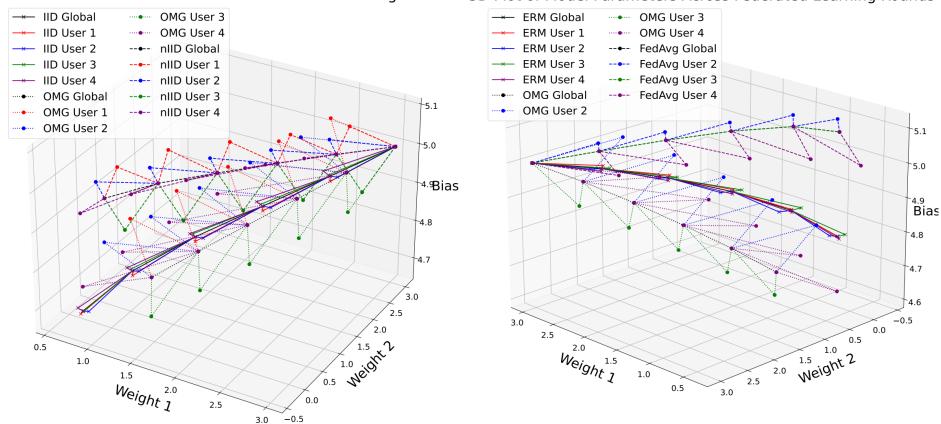
- Gradient Conflict between clients indicate the domain divergence.
- Naïve averaging of vanilla FL lead to negative transfer.

>


On-Server Gradient Matching

Gradient Matching

- Reduce the cosine similarity between updated trajectories of different clients.
- Reduce the negative transfer on distinct clients.
- Each distributed client must compete to obtain the best updated policy.


Search Space Limitation

- Reduce computation resources required.
- Mitigate the risk of getting trapped in local minima.

Illustrative Toy Task

3D Plot of Model Parameters Across Federated Learning Rounds 3D Plot of Model Parameters Across Federated Learning Rounds

FL setting: all clients participated.

FDG setting: 1 client being dropped out.

Algorithm	VLCS					PACS					OfficeHome				
	v	L	C	S	Avg	P	A	C	S	Avg	A	C	P	R	Avg
FedAvg	72.5 ± 0.8	61.1 ± 0.9	93.6 ± 1.0	65.4 ± 0.3	73.1	92.7 ± 0.6	77.2 ± 1.0	77.9 ± 0.5	81.0 ± 0.8	82.7	57.7 ± 0.9	48.3 ± 0.1	72.8 ± 0.2	75.3 ± 0.1	63.5
FedGA	74.4 ± 0.1	56.9 ± 1.0	94.3 ± 0.6	68.9 ± 0.9	73.4	93.9 ± 0.2	81.2 ± 0.7	76.7 ± 0.4	82.5 ± 0.1	83.5	58.5 ± 0.4	54.3 ± 0.6	73.3 ± 0.8	74.7 ± 1.0	65.2
FedSAM	74.5 ± 0.3	58.0 ± 0.4	92.9 ± 0.8	74.1 ± 0.7	74.8	91.2 ± 0.1	74.4 ± 0.9	77.7 ± 0.3	83.3 ± 0.2	81.6	55.3 ± 0.2	54.7 ± 0.4	73.5 ± 0.5	73.7 ± 0.7	64.3
FedIIR	76.1 ± 1.4	60.9 ± 0.2	96.3 ± 0.4	73.2 ± 0.8	76.6	94.2 ± 0.2	82.9 ± 0.8	75.8 ± 0.3	81.9 ± 0.8	83.7	57.1 ± 0.4	49.8 ± 0.6	74.2 ± 0.1	76.1 ± 0.1	64.4
FedSR	72.8 ± 0.3	62.3 ± 0.3	93.8 ± 0.5	74.4 ± 0.6	75.8	94.0 ± 0.6	82.8 ± 1.5	75.2 ± 0.5	81.7 ± 0.8	83.4	57.9 ± 0.2	50.3 ± 0.6	73.3 ± 0.1	75.5 ± 0.1	64.3
StableFDG	73.6 ± 0.1	59.2 ± 0.7	98.1 ± 0.2	70.2 ± 1.1	75.3	94.8 ± 0.1	83.0 ± 1.1	79.3 ± 0.2	79.7 ± 0.8	84.2	57.1 ± 0.3	57.9 ± 0.5	72.7 ± 0.6	72.1 ± 0.8	65.0
FedOMG	82.3 ± 0.5	67.5 ± 0.4	$\textbf{99.3} \pm \textbf{0.1}$	$\textbf{79.1} \pm \textbf{0.5}$	82.0	98.0 ± 0.2	$\textbf{89.7} \pm \textbf{0.4}$	$\textbf{81.4} \pm \textbf{0.8}$	$\textbf{84.3} \pm \textbf{0.5}$	88.4	$\textbf{65.4} \pm \textbf{0.4}$	$\textbf{58.1} \pm \textbf{0.3}$	$\textbf{77.5} \pm \textbf{0.4}$	$\textbf{78.9} \pm \textbf{0.5}$	70.0
FedIIR+OMG	75.3 ± 1.3	64.0 ± 0.2	97.7 ± 0.1	72.8 ± 0.2	77.5	97.7 ± 0.1	83.0 ± 1.1	80.8 ± 0.2	79.3 ± 0.3	85.2	62.0 ± 0.3	52.8 ± 0.5	74.3 ± 0.6	76.9 ± 0.8	66.5
FedSAM+OMG	$\textbf{82.7} \pm \textbf{0.7}$	$\textbf{69.4} \pm \textbf{0.9}$	99.3 ± 0.3	$\textbf{78.5} \pm \textbf{0.8}$	82.5	$\textbf{98.3} \pm \textbf{0.1}$	$\textbf{88.9} \pm \textbf{1.2}$	$\textbf{82.7} \pm \textbf{0.3}$	$\textbf{85.5} \pm \textbf{0.2}$	88.8	$\textbf{65.8} \pm \textbf{0.2}$	$\textbf{58.9} \pm \textbf{0.4}$	$\textbf{78.9} \pm \textbf{0.5}$	$\textbf{79.3} \pm \textbf{0.7}$	70.9
FedSR+OMG	73.6 ± 0.1	66.0 ± 0.3	94.8 ± 0.2	73.3 ± 3.3	76.9	97.2 ± 0.1	83.2 ± 1.1	79.8 ± 0.2	79.3 ± 3.3	84.8	61.7 ± 0.3	53.3 ± 0.5	73.6 ± 0.6	75.9 ± 0.8	66.1

Domain generalization performance on VLCS, PACS, and OfficeHome Datasets

THANK YOU