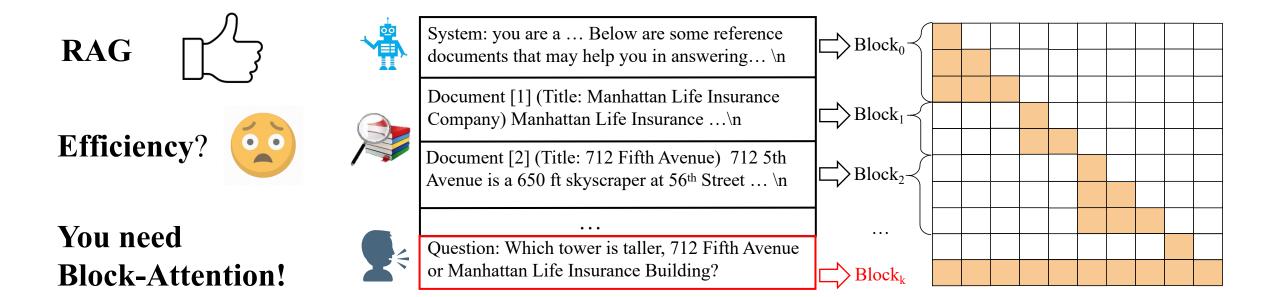


Block-Attention for Efficient Prefilling

Dongyang Ma, Yan Wang, Tian Lan

Tencent AI Platform Dept

The Dilemma of RAG



Core Idea:

- Divide input into Independent Blocks
- Parallel Encoding. Only the final block attends to full context
- Block KV Cache Reuse!

Full Attention Block Attention

Challenges?

Performance drop from 66.1% to 42.5%, because of

- Incorrect positional encoding
- Never seen block-attention before

Position Re-encoding: position $i \Longrightarrow$ target position i_{Δ}

Encoding:
$$f(x_i, i) = R(i\theta) \cdot p_i$$

Reset:
$$f(x_i, 0) = R(-i\theta) \cdot f(x_i, i)$$

Re-encoding:
$$f(x_{i_{\Delta}}, i_{\Delta}) = R(i_{\Delta}\theta) \cdot f(x_{i}, 0)$$

First set the positional encoding to 0, and then rotate it to the target position i_{Δ} !

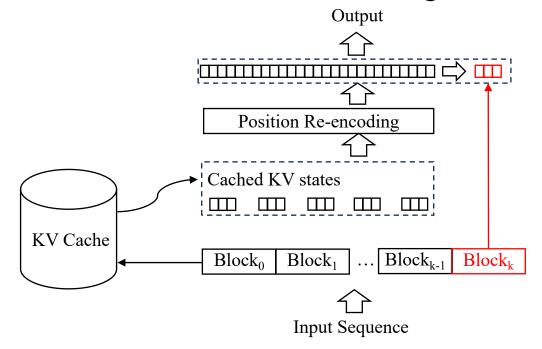
Full Attention Block Attention

Block Fine-Tune:

• Training with Block and full-attention data simultaneously

Inference with Block Attention:

Retrieval Cache ⇒ Position Re-encoding ⇒ Computation



Experiments: RAG

Train Set: Tulu3-SFT, TriviaQA and 2Wiki

Test Set:

- RAG: 2Wiki, HQA, NQ, TQA

- General: IFEval, HumanEval, MMLU - ICL: GSM8K, MATH, BBH, DROP

Models	2wiki	HQA	NQ	TQA
Tulu3-SFT	62.0	68.4	58.6	75.7
Tulu3-RAG	73.2	74.8	61.5	75.8
Tulu3-RAG-Superposition	30.1	32.3	35.9	58.9
Tulu3-RAG-promptCache	32.4	31.6	44.4	61.8
Tulu3-block-ft	72.2	72.3	60.4	75.1
Tulu3-block-ft-full	73.6	75.2	62.2	76.2
Tulu3-block-ft-w/o-pos	68.9	69.9	59.2	74.4
Tulu3-block-w/o-ft	42.9	42.1	48.3	66.5

RAG: Block-Attention (Tulu3-block-ft) is **comparable** to full-attention (Tulu3-SFT and Tulu3-RAG)

Experiments: General and ICL

Task Type		General			ICL		
dataset	IFEval	HumanEval	MMLU	GMS8K	MATH	BBH	DROP
setup	0-shot	0-shot	0-shot	4-shot	4-shot	3-shot	3-shot
Tulu3-SFT	68.5	58.5	63.7	75.5	29.2	68.5	9.4
Tulu3-RAG	68.3	65.2	63.6	75.6	28.6	68.5	10.4
Tulu3-block-ft	70.0	59.1	63.0	75.7	28.8	65.3	14.4

General and ICL: Block-Attention performs comparably or **slightly better** than full-attention models (Tulu3-SFT)

Seamlessly switches between block and full attention, without any performance loss!

Efficiency

Prompt Length	50	512	1 K	2K	4K	8K	16K	32K
TTFT-vanilla	26	50	87	167	330	691	1515	3638
TTFT-block	26	26(48%)	26(71%)	26(84%)	27(91%)	29(95%)	34(97%)	45(98.7%)
FLOPs-TFT-vanilla	7.5e+11	7.6e+12	1.5e+13	3.0e+13	6.1e+13	1.2e+14	2.45e+14	4.9e+14
FLOPs-TFT-block	7.5e+11	7.5e+11	7.5e+11	7.5e+11	7.5e + 11	7.5e + 11	7.5e + 11	7.5e + 11
Reduction	_	90.1%	95.0%	97.5%	98.7%	99.3%	99.6%	99.8%

Within a 32K-token input and 50-token question (last block), Block-Attention:

- Reduces TTFT by 98.7% compared to full-attention models
- Corresponding FLOPs-TFT reduced by 99.8%
- Only Need 800 further fine-tuning steps

Conclusion and Highlights

Generalization:

• Block-Attention is a general efficient prefilling method, not just specific to RAG. (Don't miss its disruptive impact on real-time game agents. Please pay attention to our Appendix A.)

Performance:

• Through some real-world practice, we are convinced that block fine-tuning can easily ensure that there is no performance loss even when there are **hundreds of blocks**.

Flexibility:

• Easily adapt to any scenarios through the **seamless switching** between block and full attention

THANKS

Job or Intern Opportunity? Contact us! (yanwang.branden@gmail.com)