

Better Instruction-Following with Minimum Bayes Risk

ICLR 2025 Spotlight

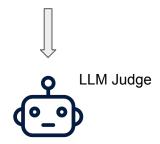
Ian Wu, Patrick Fernandes, Amanda Bertsch, Seungone Kim, Sina Pakazad, Graham Neubig

LLM Judges as Supervisors

- LLMs judges are widely used for evaluating the quality of text.
- LLM judges may be few-shot prompted LLMs or specialist models trained for judging.
- Instead of using judges for evaluation, it is also possible to use them for supervision. This is typically done using Best-of-N decoding.

Describe policy gradients.

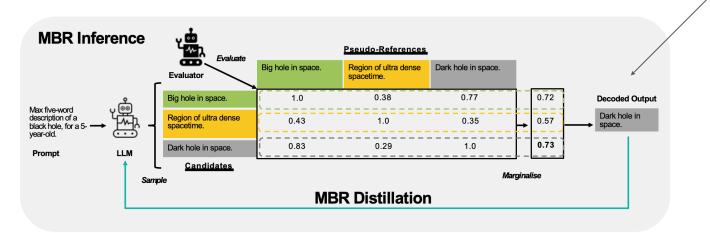
Answer: policy gradients is an approach to reinforcement...



Good explanation with some inaccuracies.
Score: 3.

Minimum Bayes Risk Decoding

Highest consensus quality output



Best-of-*N* **Decoding (Reference-Free)**

$$\hat{y} = \operatorname*{arg\,max}_{y \in \mathcal{H}_{\mathrm{hyp}}} u(y).$$

MBR Decoding (Reference-Based)
$$\hat{y} = \argmax_{y \in \mathcal{H}_{\mathrm{hyp}}} \quad \underbrace{\mathbb{E}_{y * \sim p(y|x)}[u(y,y^*)]}_{\approx \quad \frac{1}{N_{\mathrm{cand}}} \sum_{j=1}^{N_{\mathrm{cand}}} u(y,y^{(j)})}_{},$$

	2-7B	2-13B	2-70B	3-8B	3-70B	Avg. Δ
Greedy	14.4	19.0	22.8	34.4	42.7	0
BS	14.8	18.2	21.5	33.9	42.4	-0.50
Longest	10.5	15.2	19.8	29.8	40.4	-3.51
Prometheus BoN	<u>16.4</u>	<u>20.8</u>	<u>25.0</u>	35.5	<u>44.3</u>	<u>1.74</u>
ROUGE MBR	16.2	20.0	24.7	35.4	43.7	1.33
BERTScore MBR	16.2	20.5	24.4	<u>35.7</u>	44.0	1.50
SFR-Embedder MBR	12.1	16.6	22.2	32.5	42.8	-1.42
Prometheus MBR	17.7	23.4	26.2	37.9	46.0	3.62

Table 1: AlpacaEval 2.0 win rates (%) for various models and decoding strategies, along with the average win rate differences compared to greedy decoding across all models (denoted as **Avg.** Δ). MBR decoding with Prometheus consistently outperforms all baseline methods and other MBR decoding methods.

Key Takeaway

MBR inference with LLM judge Prometheus 2 improves performance on AlpacaEval.

	2-7B	2-13B	2-70B	3-8B	3-70B	Avg. Δ
Greedy	5.72	5.90	6.50	7.54	8.29	0
BS	5.58	5.95	6.49	7.30	8.20	-0.09
Longest	5.67	6.03	6.59	7.22	8.22	-0.04
Prometheus BoN	5.77	6.08	6.65	<u>7.66</u>	<u>8.42</u>	<u>0.13</u>
ROUGE MBR	5.78	6.11	6.68	7.63	8.31	0.11
BERTScore MBR	5.68	6.02	6.72	7.52	8.42	0.08
SFR-Embedder MBR	5.73	6.04	6.54	7.45	8.33	0.03
Prometheus MBR	6.10	6.26	6.79	7.69	8.50	0.28

Table 2: MT-Bench scores for various models and decoding strategies, along with the average score differences compared to greedy decoding across all models (denoted as **Avg.** Δ). MBR decoding with Prometheus consistently outperforms all baseline methods and other MBR decoding methods.

Key Takeaway

MBR inference with LLM judge Prometheus 2 improves performance on MT-Bench.

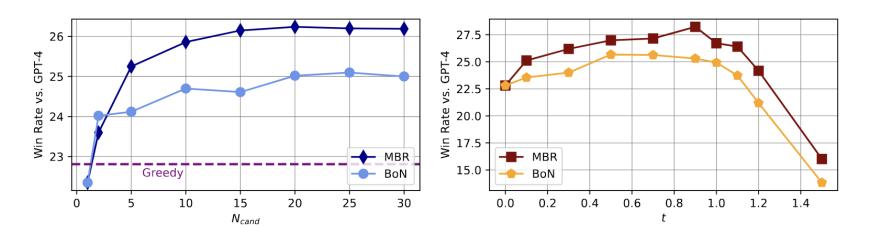


Figure 2: AlpacaEval 2.0 win rates (%) for Llama2-70b with varying hypothesis set size $N_{\rm cand}$ (left) and generation temperature t (right) values for Prometheus MBR and BoN decoding. Performance for both methods initially increases with $N_{\rm cand}$ and plateaus at around $N_{\rm cand}=20$. Performance also initially increases with t, but drops rapidly after t=1.0.

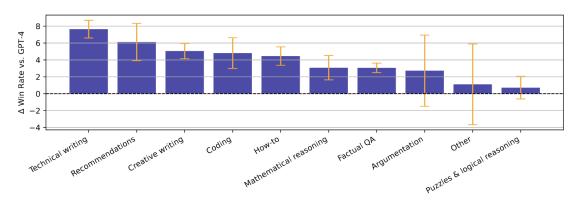


Figure 3: Difference in AlpacaEval 2.0 win rates (%) between Prometheus MBR decoding and greedy decoding averaged over all five LLMs and broken down by question category. A positive value indicates that MBR decoding outperforms greedy decoding on the given category. Orange bars represent the standard error. We find that Prometheus MBR decoding improves performance across a wide range of question categories.

Key Takeaway

MBR inference improves performance across a range of tasks. Improvements are most significant for writing-based tasks.

	2-7B	2-13B	2-70B	3-8B	3-70B	Avg. Δ
Greedy	5.72	5.90	6.50	7.54	8.29	0
Prometheus-2-7B-BoN	5.77	6.08	6.65	7.66	8.42	0.13
Prometheus-2-7B-MBR	6.10	6.26	6.79	7.69	8.50	0.28
Prometheus-2-8x7B-BoN	6.01	6.17	6.80	7.75	8.41	0.24
Prometheus-2-8x7B-MBR	6.26	6.32	6.87	7.79	8.64	0.39
JudgeLM-7b-BoN	5.63	5.95	6.69	7.37	8.26	-0.01
JudgeLM-7b-MBR	6.00	6.11	6.79	7.69	8.44	0.22
JudgeLM-33b-BoN	5.68	6.03	6.58	7.37	8.35	0.01
JudgeLM-33b-MBR	5.94	6.27	<u>6.88</u>	7.92	8.50	0.31
Llama3-8b-Instruct-BoN	5.83	6.05	6.61	7.60	8.38	0.10
Llama3-8b-Instruct-MBR	5.96	6.28	6.84	7.80	8.47	0.28
Llama3-70b-Instruct-BoN	5.77	6.16	6.57	7.39	8.35	0.06
Llama3-70b-Instruct-MBR	6.22	6.43	6.94	7.87	8.52	0.41

Table 3: MT-Bench scores for BoN and MBR decoding with various judge LLMs as utility metrics, along with the average score differences compared to greedy decoding across all models (denoted **Avg.** Δ). MBR decoding consistently outperforms BoN decoding across all comparable utility metrics.

Key Takeaway

MBR inference improvements generalise across various judges and judge scales.

Experiment II: MBR Distillation

- Train the generator LLM on its own best and worst outputs, as determined by MBR, via DPO.
- Enables training without human-generated labels or preferences!

$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(x,\hat{y}^+,\hat{y}^- \sim \mathcal{Y}_k)} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(\hat{y}^+|x)}{\pi_{\text{ref}}(\hat{y}^+|x)} - \beta \log \frac{\pi_{\theta}(\hat{y}^-|x)}{\pi_{\text{ref}}(\hat{y}^-|x)} \right) \right]$$

$$\hat{y}^+ = \underset{y \in \mathcal{H}_{\text{hyp}}}{\operatorname{arg \, max}} \, \tilde{u}(y)$$
 $\hat{y}^- = \underset{y \in \mathcal{H}_{\text{hyp}}}{\operatorname{arg \, min}} \, \tilde{u}(y)$

Experiment II: MBR Distillation

	Alpac	aEval 2.0	MT-Bench		
	7B	13B	7B	13B	
sft w. Greedy	5.18	8.24	5.43	5.85	
sft w. MBR	9.99	13.6	5.78	6.31	
sft-full	6.35	9.40	5.55	6.26	
dpo-1-BoN	5.78	10.3	5.78	6.08	
dpo-2-BoN	6.22	11.2	5.91	6.41	
dpo-3-BoN	6.40	12.8	5.88	6.56	
dpo-1-MBR	5.68	10.8	5.78	6.48	
dpo-2-MBR	7.22	13.9	6.11	6.73	
dpo-3-MBR	8.86	15.3	6.14	6.75	

	AlpacaEval 2.0	MT-Bench
sft-1-MBR	5.52	5.48
sft-2-MBR	6.75	5.43
sft-3-MBR	6.48	5.51

Table 4: (**Left**) AlpacaEval 2.0 win rates (%) and MT-Bench scores for models self-trained using DPO. After three rounds of training, the self-trained models consistently outperform their BoN counterparts and SFT baselines. (**Top**) AlpacaEval 2.0 win rates (%) and MT-Bench scores for models self-trained using SFT. Self-training with SFT yields substantially worse results than self-training with DPO.

Key Takeaway

MBR distillation with DPO improves greedy decoding performance.

Conclusion

- MBR decoding yields significant and consistent improvements to model performance relative to Best-of-N decoding.
- MBR decoding can be used to curate self-training data to further improve greedy performance.
- We hope that our work inspires future work on MBR decoding as well as usage of LLM judges for supervision.