Self-Boosting Large Language Models with Synthetic Preference Data

Qingxiu Dong^{* 1} Li Dong ² Xingxing Zhang ² Zhifang Sui ¹ Furu Wei ²

¹Peking University ²Microsoft Research

Introduction

Aligning Large Language Models (LLMs) with human preferences is crucial for improving their utility and safety. However, most work still relies on static, pre-collected preference datasets from:

- 1. Human annotation (challenging and costly).
- 2. Synthesized by more powerful models (expensive, no generative rewards).
- 3. On-policy sampling or self-rewarding (inadequate diversity and supervision, especially for weak models).

How to continually improve LLMs with limited data?

- We propose SynPO, a self-boosting method that enables LLMs to generate high-quality training data without human-labeled preferences.
- SynPO leverages pre/post-refinement generations as synthetic preference pairs, guiding LLMs with implicit generative rewards to improve iteratively.
- SynPO enhances instruction-following and general performance iteratively.

Synthetic Prompt Creation

We train the LLM itself to serve as a high-quality prompt generator: (1) Construct pseudo keywords to text data, train a self prompt generator. (2) Sample random keywords from RefinedWeb paragraphs. (3) Generate new prompts using the prompt generator.

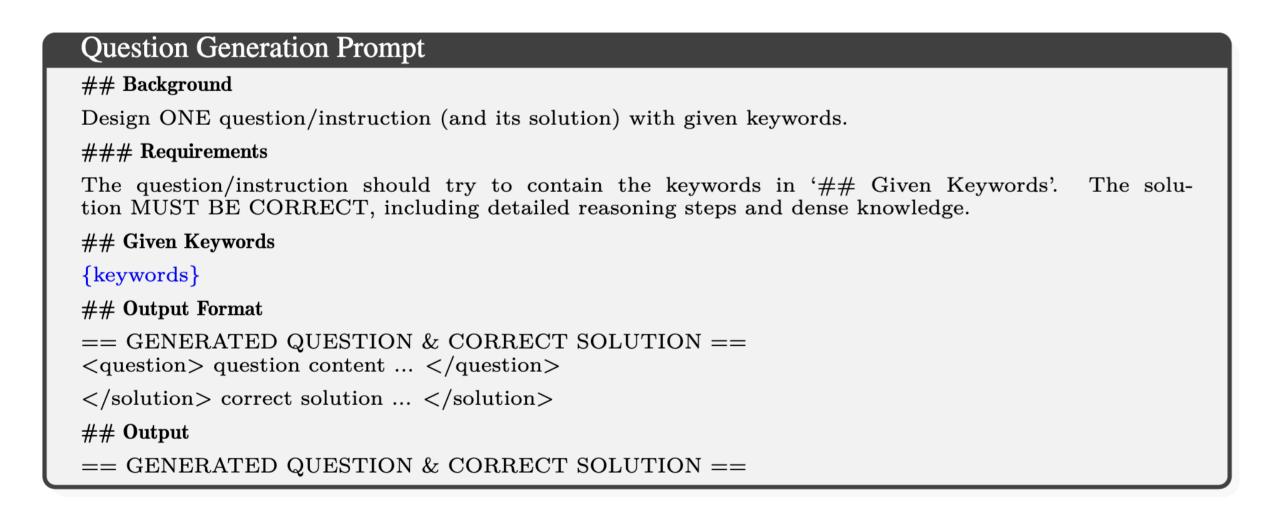
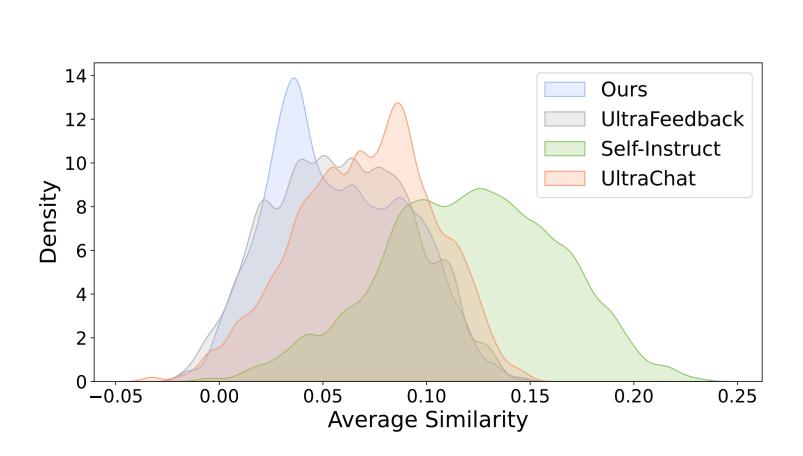


Figure 1. Prompt used in SynPO for LLMs to act as self-prompt generators.



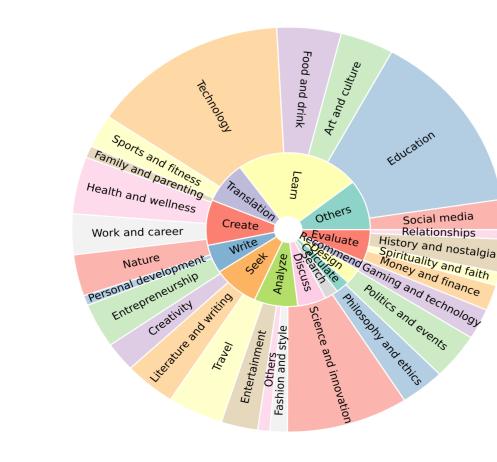


Figure 2. Inter-prompt similarity.

Figure 3. Topics and Intentions.

Synthetic Preference Generation

SynPO trains the LLM to be a response improver to continuously refines its own response, and therefore creating rejected (pre-improvement) and chosen (post-improvement) candidates for preference optimization.

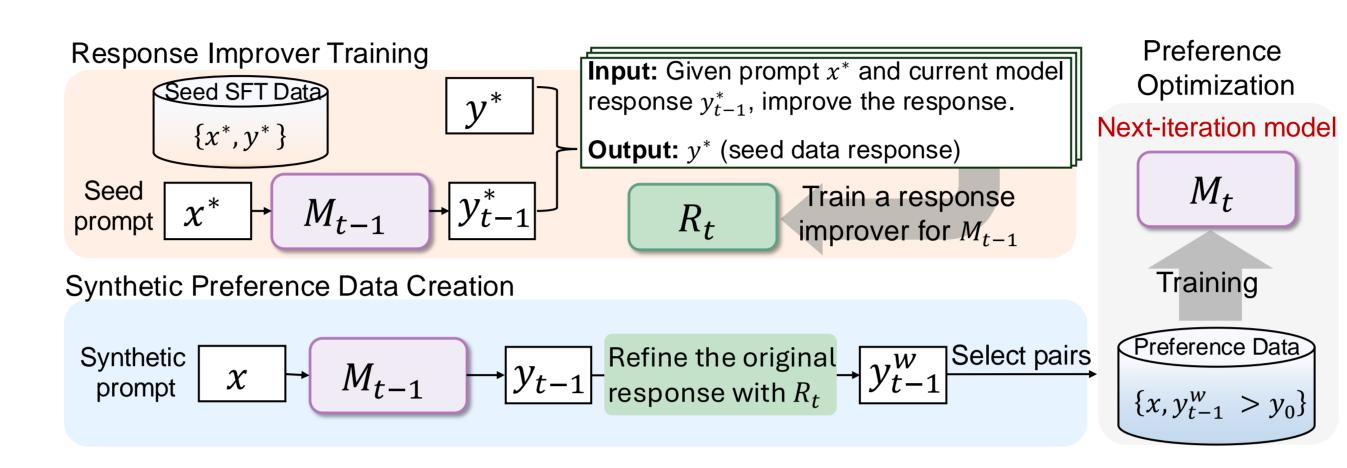


Figure 4. Overview of SynPO in the **t**th iteration.

Research Intuition

Intuitions of training LLMs as self-response improvers:

- Intuition 1: LLMs excel at identifying distribution gaps between texts[2, 1].
- Intuition 2: Refining a response is generally easier than generating a high-quality response from scratch [3].

Response Improver Training

At iteration t, the policy model $\pi_{\theta_{t-1}}$ generates outputs for seed prompts: $\mathbf{y}_{(t-1),i}^*$. Training set: $(\mathbf{x}_i^*, \mathbf{y}_{(t-1),i}^*)$ as input, \mathbf{y}_i^* (gold standard) as output. Fine-tune π_{θ_0} to obtain response improver \mathcal{R}_t , aligning outputs closer to \mathbf{y}_i^* .

Response Improving

For synthetic prompt \mathbf{x}_i : (1) Generate $\mathbf{y}_{(t-1),i} \sim \pi_{\theta_{t-1}}(\cdot|\mathbf{x}_i)$. (2) Refine with \mathcal{R}_t to get chosen response $\overline{\mathbf{y}_{(t-1),i}} \sim \mathcal{R}_t(\cdot|\mathbf{x}_i,\mathbf{y}_{(t-1),i})$. (3) Use initial output $\mathbf{y}_{(0),i} \sim \pi_{\theta_0}(\cdot|\mathbf{x}_i)$ as rejected response.

Data Filtering

Filter self-generated data using a small model (e.g., 0.4B PairRM) for scoring. Integrate into synthetic preference data for next iteration.

Synthetic Preference Optimization

Denoting \mathcal{D} as the synthetic preference data, we follow SimPO for training:

$$\theta_t \leftarrow \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l) \sim \mathcal{D}} \left[\log \sigma \left(\frac{\beta}{|\mathbf{y}_i^w|} \log \pi_{\theta_{t-1}}(\mathbf{y}_i^w \mid \mathbf{x}_i) - \frac{\beta}{|\mathbf{y}_i^l|} \log \pi_{\theta_{t-1}}(\mathbf{y}_i^l \mid \mathbf{x}_i) - \gamma \right) \right]$$

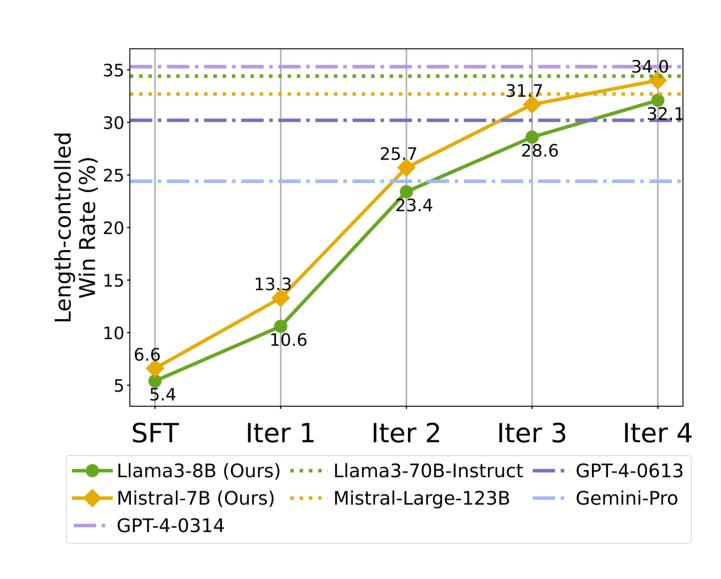
SynPO helps the model learning to improve its own outputs iteratively. The entire optimization process is performed on synthetic data, only a small set for validation.

Results and Discussion

SynPO not only benefits LLM alignment with human preferences, but also improves generalist capabilities across various tasks.

Instruction-following Capability

SynPO significantly improves the instruction-following abilities of LLMs.



Model	Size	LC (%)	WR (%
gpt4_1106_preview	_	50.0	50.0
GPT-4 (03/14)	_	35.3	22.2
Meta-Llama-3-70B-Instruct	70B	34.4	33.2
Mistral-Base-SynPO Iter	4 7B	34.0	36.4
Mistral Large (24/02)	123B	32.7	21.4
Mistral-Base-SynPO Iter	3 7B	31.7	33.8
GPT-4 (06/13)	_	30.2	15.8
Claude 2	_	28.2	17.2
Claude 2.1	_	27.3	17.0
Mistral-Base-SynPO Iter	2 7B	25.7	28.1
gemini-pro	_	24.4	18.2
Mixtral-8x7B-Instruct-v0.1	8x7B	23.7	18.3
Mistral-7B-Instruct-v0.2	7B	17.1	14.7
Mistral-Base-SynPO Iter	1 7B	13.3	15.3
Mistral-Base-SFT	7B	6.6	3.6

Figure 5. LC Win Rate on AlpacaEval 2.0.

Figure 6. AlpacaEval 2.0 Leaderboard.

General Task Performance

Self-boosted models achieve 3.2% to 5.0% higher average performance than SFT models on Open LLM leaderboard.

Model	Arc	HellaSwag	TQA	MMLU	Winogrande	GSM8k	Average
LLama3-Base-SFT	60.92	81.28	45.37	63.80	76.72	51.93	63.34
Manual Collection	66.72	82.89	59.47	63.10	77.82	45.72	65.95
Sampling-Ranking Iters*	66.38	82.71	59.84	63.37	77.27	54.40	67.33
Self-Rewarding Iters*	64.76	82.48	55.54	63.42	77.03	54.59	66.30
SynPO Iter1	63.99	82.66	54.20	64.02	77.51	56.10	66.41
SynPO Iter2	65.70	83.22	61.73	64.03	76.56	56.25	67.92
SynPO Iter3	66.55	83.57	63.53	63.91	76.80	55.27	68.27
SynPO Iter4	66.47	83.44	63.69	63.79	76.90	55.72	68.34

Table 1. Open LLM Leaderboard results. * represents the best performance across multiple iterations.

Takeaways

- SynPO generates diverse prompts to support iterative model improvement.
- Response improver trains via LLM-learned implicit generative rewards.
- Small, high-quality validation data **anchors training** and guides better synthetic generation.
- [1] Describing differences between text distributions with natural language.
- [2] Explaining patterns in data with language models via interpretable autoprompting.
- [3] Self-refine: Iterative refinement with self-feedback.