

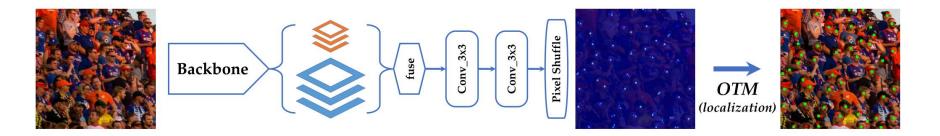
Proximal Mapping Loss: Understanding Loss Functions in Crowd Counting & Localization

Wei Lin¹, Jia Wan², and Antoni B. Chan¹

¹Department of Computer Science, City University of Hong Kong ²School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen elonlin24@gmail.com, jiawan1998@gmail.com, abchan@cityu.edu.hk

VISAL: Video, Image, and Sound Analysis Lab

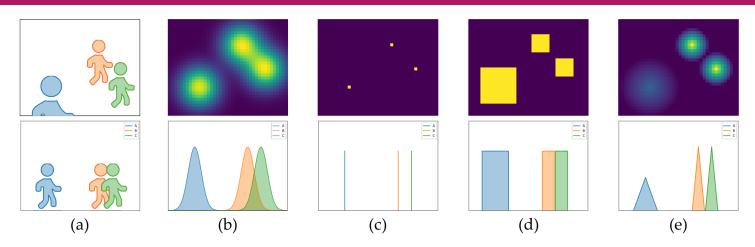
Supervised Crowd Counting



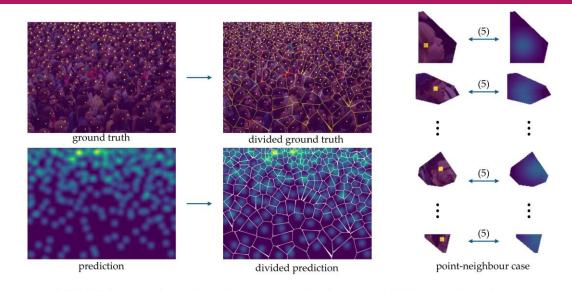
Supervised crowd counting is normally formulated as a regression task:

- ➤ **Input:** an image contain crowds;
- **Output:** a density map demonstrate the distribution and count of crowd in the input;
- ➤ **Ground Truth:** a point map in which a pixel with a value of one denotes a person's location.
- **OTM** is applied to regress the density map into a point map.
- ➤ **Applications:** video surveillance and public safety services, traffic congestion control, marine environmental monitoring

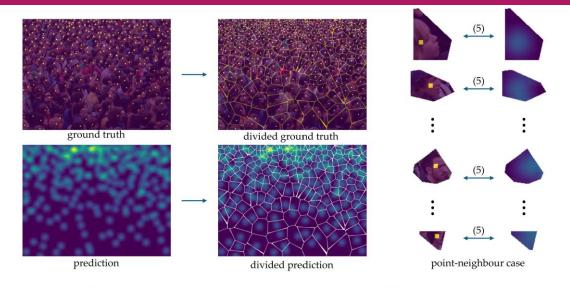
Supervised Crowd Counting



- (a) A synthetic input with three humans;
- (b) Density regression with the intersection hypothesis (using a Gaussian prior), where one pixel may correspond to multiple objects;
- (c) Point prediction;
- (d) Head region segmentation;
- (e) Density regression without the intersection hypothesis (proposed method), where one pixel corresponds to one object.



- (I) Divide Stage: assign each pixel to its nearest GT point
- (II) Conquer Stage: loss computation
- nearest neighbour is adopted to split the density map into multiple irregular patches without overlapping.
- In PML, the loss computation is divided into multiple simpler sub-problems, as each point-neighbour case can be handled independently.



(I) Divide Stage: assign each pixel to its nearest GT point

(II) Conquer Stage: loss computation

$$\mathcal{L}(\mathcal{A}, \mathcal{B}) = \sum_{j=1}^{m} \tilde{\mathcal{L}}(\tilde{\mathcal{A}}_{j}, \boldsymbol{b}_{j}), \quad \tilde{\mathcal{A}}_{j} = \{(a_{i}, \boldsymbol{x}_{i})\}_{i \in \mathcal{X}_{j}} \quad \boldsymbol{b}_{j} = (1, \boldsymbol{y}_{j}),$$
(1)

$$\mathcal{X}_j = \left\{ i \mid \|\boldsymbol{x}_i - \boldsymbol{y}_j\|_2 \le \|\boldsymbol{x}_i - \boldsymbol{y}_k\|_2, \ \forall \boldsymbol{y}_k \in \mathcal{B} \right\}, \tag{2}$$

By defining $\tilde{\boldsymbol{a}} = [\tilde{a}_i]_i^{\tilde{n}}$ constructed from $\tilde{\mathcal{A}}$, the objective inherited from GL is to minimize the transport $f(\tilde{a}) = c^{\top}\tilde{a}$, where $\boldsymbol{c} = [c_i]_{i=1}^{\tilde{n}}$ measures the cost when moving a unit mass from \boldsymbol{x}_i to \boldsymbol{y} .

Proximal mapping:
$$\tilde{a}_{t+1} \approx \underset{p}{\operatorname{argmin}} \underbrace{f(\tilde{a}_t) + \nabla f(\tilde{a}_t)^{\top}(p - \tilde{a}_t)}_{\text{linear approximation of } f(\tilde{a}_{t+1})} + \underbrace{\frac{\tau}{2} \|p - \tilde{a}_t\|^2}_{\text{regularizer}}$$

$$egin{aligned} & rac{
abla f(ilde{m{a}}_t) = m{c}}{\xi \subseteq \{m{p} \mid m{p}^ op m{1} = 1, m{p} \in \mathbb{R}^{ ilde{n}}\}} \;\; m{\downarrow} \;\;\;\; \mathcal{L}(ilde{\mathcal{A}}, m{b}) = \min_{m{p} \in m{\xi}} \;\; m{c}^ op m{p} + rac{ au}{2} \|m{p} - ilde{m{a}}\|^2 \end{aligned}$$

Bregman divergence
$$\mathcal{D}_{\varphi}(\pmb{p}, \pmb{\tilde{a}})$$
 \longrightarrow $\mathcal{L}(\tilde{\mathcal{A}}, \pmb{b}) = \min_{\pmb{p} \in \xi} \; \pmb{p}^{\top} \pmb{a} + \tau \mathcal{D}_{\varphi}(\pmb{p}, \tilde{\pmb{a}})$

$$\mathcal{L}(\tilde{\mathcal{A}}, \boldsymbol{b}) = \min_{\boldsymbol{p} \in \boldsymbol{\xi}} \ \boldsymbol{p}^{\top} \boldsymbol{a} + \tau \mathcal{D}_{\varphi}(\boldsymbol{p}, \tilde{\boldsymbol{a}})$$

loss function	au	$\mathcal{D}_{arphi}(oldsymbol{p},oldsymbol{a})$	ξ	p^*
L2 loss (Zhang et al., 2016)	0	$\ oldsymbol{rac{1}{2}}\ oldsymbol{p}-oldsymbol{a}\ ^2$	$\mathcal{N}(\mu \Sigma)$	$\mathcal{N}(0 \sigma1_{2 imes2})$
Bayesian loss (Ma et al., 2019)	$\frac{1}{ 1^{\top}\boldsymbol{a}-1 }$	$\ oldsymbol{p} - oldsymbol{a}\ oldsymbol{p} - oldsymbol{a}\ ^2$	-	$ig oldsymbol{a} - rac{1}{ 1^{ op}oldsymbol{a}-1 }oldsymbol{c} + \eta$
P2PNet (Song et al., 2021)		$\ oldsymbol{p}-oldsymbol{a}\ _1$	$\delta(\cdot)$	$\delta(\arg\min_{j} \boldsymbol{c}_{j} - \tau \boldsymbol{a}_{j})$
DM-Count (Wang et al., 2020a)	∞	KL $(oldsymbol{p} \mid oldsymbol{a})$	-	$\ oldsymbol{a}/\ oldsymbol{a}\ _1$

PML & L2 loss

$$\mathcal{L}(\tilde{\mathcal{A}}, \boldsymbol{b}) = \min_{\boldsymbol{p} \in \mathcal{E}} \; \boldsymbol{p}^{\top} \boldsymbol{a} + \tau \mathcal{D}_{\varphi}(\boldsymbol{p}, \tilde{\boldsymbol{a}}) \; ext{with} \; \mathcal{D}_{\varphi} = \frac{1}{2} \| \boldsymbol{p} - \tilde{\boldsymbol{a}} \|^2$$

$$\mathcal{L}_2 = \min_{p} c^{\top} p + \frac{\tau}{2} ||p - \tilde{a}||_2^2, \quad s.t. \quad p^{\top} \mathbf{1} = \sum_{i=0}^{\tilde{n}} p_i = 1.$$

$$p^* = \tilde{a} - \frac{1}{\tau_1}c + \eta, \qquad \eta = \frac{1}{\tilde{n}} \left[1 - \left(\tilde{a} - \frac{1}{\tau}c \right)^{\top} \mathbf{1} \right]$$

Here η takes the role as "filler" such that $p^{*T}\mathbf{1} = 1$.

$$rac{\partial \mathcal{L}_2}{\partial ilde{a}_i} = c_i - au \eta \quad \Rightarrow \quad \mathcal{L}_2 = rac{ au}{2} \|m{a} - ext{detach}(m{p}^*)\|_2^2$$

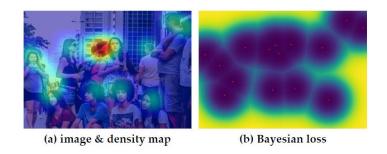
PML & L2 loss

$$\mathcal{L}_2 = rac{ au}{2} \|oldsymbol{a} - ext{detach}(oldsymbol{p}^*)\|_2^2 \quad ext{ where } \quad oldsymbol{p}^* = oldsymbol{a} - rac{1}{ au} oldsymbol{c} + \eta$$

Dynamic L2 loss
$$\begin{cases} \lim_{\tau \to 0} \boldsymbol{p}^* = \delta(\boldsymbol{y}) \\ \lim_{\tau \to \infty} \boldsymbol{p}^* = \tilde{\boldsymbol{a}} + (1 - \mathbf{1}^{\top} \tilde{\boldsymbol{a}}) \end{cases}$$

Traditional L2 loss
$$\begin{cases} \tau = 0 \\ \xi \subseteq \mathcal{N}(\boldsymbol{\mu}|\boldsymbol{\Sigma}) \implies \boldsymbol{p}^{*\prime} \leftarrow \mathcal{N}(\boldsymbol{\mu} \mid (\boldsymbol{x} - \boldsymbol{\mu})^{\top}(\boldsymbol{x} - \boldsymbol{\mu})), \qquad \boldsymbol{\mu} = \boldsymbol{x}^{\top} \boldsymbol{p}^{*} \\ \boldsymbol{\Sigma} \succcurlyeq \sigma^{2} \mathbf{I}_{2 \times 2} \implies \boldsymbol{p}^{*\prime} \leftarrow \mathcal{N}(\boldsymbol{y}_{j} | \sigma^{2} \mathbf{I}_{2 \times 2}) \end{cases}$$

PML & Bayesian Loss



$$\mathcal{L}_b = \sum_{i=1}^n q(y_0|x_i)a_i + \sum_{j=1}^m \left| \sum_{i=1}^n q(y_j|x_i)a_i - 1 \right|$$

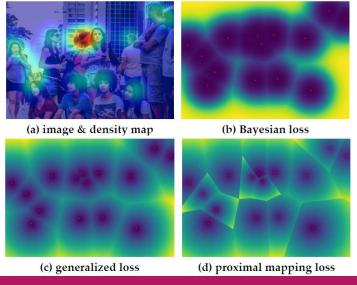
- **count loss** forces the sum of **a** to be close to 1;
- **background loss** forces the distribution of a to be close to $\delta(y)$;

$$egin{aligned} egin{aligned} egi$$

PML & Bayesian Loss

$$\mathcal{L}(\tilde{\mathcal{A}}, \boldsymbol{b}) = \min_{\boldsymbol{p} \in \xi} \ \boldsymbol{p}^{\top} \boldsymbol{a} + \tau \mathcal{D}_{\varphi}(\boldsymbol{p}, \tilde{\boldsymbol{a}}) \quad \text{with} \quad \mathcal{D}_{\varphi} = \frac{1}{2} \|\boldsymbol{p} - \tilde{\boldsymbol{a}}\|^{2}$$

$$\Rightarrow \ \boldsymbol{p}^{*} = \tilde{\boldsymbol{a}} - \frac{1}{\tau_{1}} \boldsymbol{c} + \eta, \qquad \eta = \frac{1}{\tilde{n}} \left[1 - \left(\tilde{\boldsymbol{a}} - \frac{1}{\tau} \boldsymbol{c} \right)^{\top} \mathbf{1} \right]$$



$$\frac{\partial \mathcal{L}_2}{\partial \tilde{a}_i} = c_i - \tau \eta = c_i - \frac{1}{\tilde{n}} \boldsymbol{c}^{\mathsf{T}} \mathbf{1} + \frac{\tau}{\tilde{n}} (\tilde{\boldsymbol{a}}^{\mathsf{T}} \mathbf{1} - 1)$$

$$\mathcal{L}_2 = \underbrace{(\boldsymbol{c} - \bar{c})^{\top} \boldsymbol{a}}_{\text{background loss}} + \frac{\tau}{2\tilde{n}} \underbrace{\left(\tilde{\boldsymbol{a}}^{\top} \mathbf{1} - 1\right)^2}_{\text{count loss}},$$

PML & Bayesian Loss

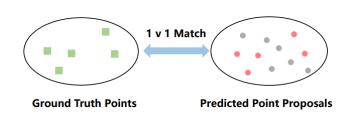
$$\mathcal{L}_2 = \underbrace{(\boldsymbol{c} - \bar{\boldsymbol{c}})^{\top} \boldsymbol{a}}_{\text{background loss}} + \frac{\tau}{2\tilde{n}} \underbrace{\left(\tilde{\boldsymbol{a}}^{\top} \mathbf{1} - 1\right)^2}_{\text{count loss}},$$

$$au = \operatorname{detach}\left(2/|\mathbf{1}^{ op} ilde{a} - 1|
ight) \left\{egin{array}{c} \mathcal{L}_b' = (oldsymbol{c} - ar{c})oldsymbol{a} + rac{1}{ ilde{n}} \left| \mathbf{1}^{ op} ilde{a} - 1
ight| \ oldsymbol{p}^* = oldsymbol{a} - \left(rac{1}{2} |\mathbf{1}^{ op} ilde{a} - 1|
ight) oldsymbol{c} + \eta \end{array}
ight.$$

L1 norm is robust to noise annotation:

- If the predicted count is close to 1, p^* will be close to the distribution of a;
- If the count is far from GT, p^* will be close to the distribution of $\delta(y)$

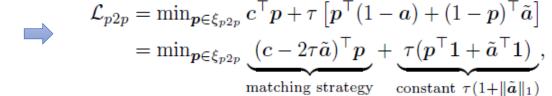
PML & P2PNet



The matching is implemented via Hungarian algorithm with the cost matrix:

$$\mathcal{D}(\mathcal{P}, \hat{\mathcal{P}}) = \left(\tau ||p_i - \hat{p}_j||_2 - \hat{c}_j\right)_{i \in N, j \in M}$$

$$\mathcal{L}_{p2p} = \min_{\boldsymbol{p} \in \xi_{p2p}} c^{\top} \boldsymbol{p} + \tau \| \boldsymbol{p} - \tilde{\boldsymbol{a}} \|_{1}, \qquad \xi_{p2p} = \{ \delta(\boldsymbol{x}_{i}) | \boldsymbol{x}_{i} \in \tilde{\mathcal{A}} \}$$

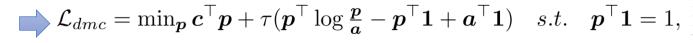


$$\mathbf{p}^* = \delta(\operatorname{argmin}_j c_j - 2\tau \tilde{a}_j)$$

PML & DMC

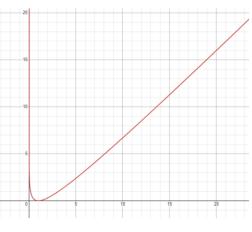
$$\mathcal{L}_{dmc} = \underbrace{oldsymbol{c}^{ op} \frac{oldsymbol{a}}{\|oldsymbol{a}\|_1}}_{ ext{OT loss}} + au \underbrace{oldsymbol{1}^{ op} oldsymbol{a} - 1 ig|}_{ ext{count loss}}$$

$$arphi(oldsymbol{x}) = oldsymbol{x}^ op \log oldsymbol{x} - oldsymbol{x}^ op \mathbf{1} \quad \Rightarrow \quad \mathcal{D}_arphi(oldsymbol{p}, oldsymbol{a}) = oldsymbol{p}^ op \log rac{oldsymbol{p}}{oldsymbol{a}} - oldsymbol{p}^ op \mathbf{1} + oldsymbol{a}^ op \mathbf{1}.$$



 η also serves as "filler", ensuring the sum of elements in p^* equals 1.

$$oldsymbol{ au} o \infty \qquad oldsymbol{p} = rac{oldsymbol{a}}{\|oldsymbol{a}\|_1} \qquad oldsymbol{} \qquad egin{pmatrix} \mathcal{L}_{dmc}^{(arphi)} = \underbrace{oldsymbol{c}^{ op} rac{oldsymbol{a}}{\|oldsymbol{a}\|_1}}_{ ext{OT loss}} + au \underbrace{\left(oldsymbol{1}^{ op} oldsymbol{a} - \log \left(oldsymbol{1}^{ op} oldsymbol{a} \right) - 1
ight)}_{ ext{count loss}}$$



METHOD		ShTech A		ShTech B		UCF-QNRF		JHU ++		NWPU	
METHOD	(backbone)	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
MCNN (Zhang et al., 2016)		232.5	714.6	110.2	173.2	277.0	426.0	188.9	483.4	232.5	714.6
CSRNet (Li et al., 2018)	(VGG-16)	68.2	115.0	10.6	16.0	110.6	190.1	85.9	309.2	121.3	387.8
SFCN (Wang et al., 2019)	(ResNet-101)	64.8	107.5	7.6	13.0	102.0	171.4	77.5	297.6	105.7	424.1
BL (Ma et al., 2019)	(VGG-19)	62.8	101.8	7.7	12.7	88.7	154.8	75.0	299.9	105.4	454.2
KDMG (Wan et al., 2020)	(VGG-19)	63.8	99.2	7.8	12.7	99.5	173.0	69.7	268.3	100.5	415.5
DMC (Wang et al., 2020a)	(VGG-19)	59.7	95.7	7.4	11.8	85.6	148.3	68.4	283.3	88.4	357.6
NoiseCC (Wan & Chan, 2020)	(VGG-19)	61.9	99.6	7.4	11.3	85.8	150.6	67.7	258.5	96.9	534.2
P2PNet (Song et al., 2021)	(VGG-16bn)	52.7	85.6	6.3	9.9	85.3	154.5	-	-	77.4	362.0
UOTCC (Ma et al., 2021)	(VGG-19)	58.1	95.9	6.5	10.2	83.3	142.3	60.5	252.7	87.8	387.5
GL (Wan et al., 2021)	(VGG-19)	61.3	95.4	7.3	11.7	84.3	147.5	59.9	259.5	79.3	346.1
ChfL (Shu et al., 2022)	(VGG-19bn)	57.5	94.3	6.9	11.0	80.3	137.6	57.0	235.7	76.8	343.0
PET (Liu et al., 2023)	(VGG-16bn)	49.3	78.8	6.2	9.7	79.5	144.3	58.5	238.0	74.4	328.5
STEERER (Han et al., 2023)	(HRNet)	54.5	86.9	<u>5.8</u>	<u>8.5</u>	<u>74.3</u>	<u>128.3</u>	<u>54.3</u>	238.1	63.7	<u>309.3</u>
PML (ours)	(VGG-16bn)	50.6	80.7	6.1	9.7	79.5	142.7	58.9	249.6	75.7	353.1
PML (ours)	(VGG-19)	55.5	89.0	6.0	9.3	76.6	132.2	57.4	227.4	73.6	338.6
PML (ours)	(HRNet)	52.3	84.7	5.4	8.2	73.2	127.5	52.6	<u>230.8</u>	<u>63.8</u>	306.9

Table 2: Comparison of our PML with recent crowd counting methods.

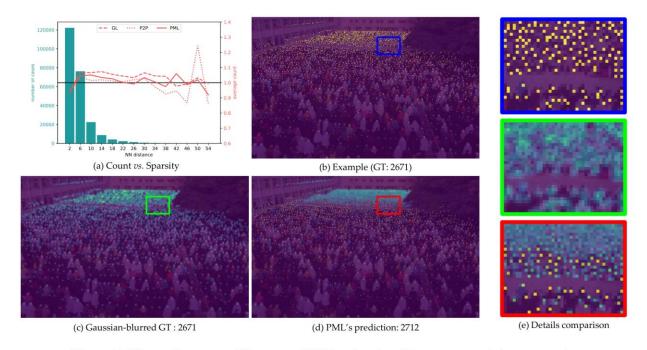


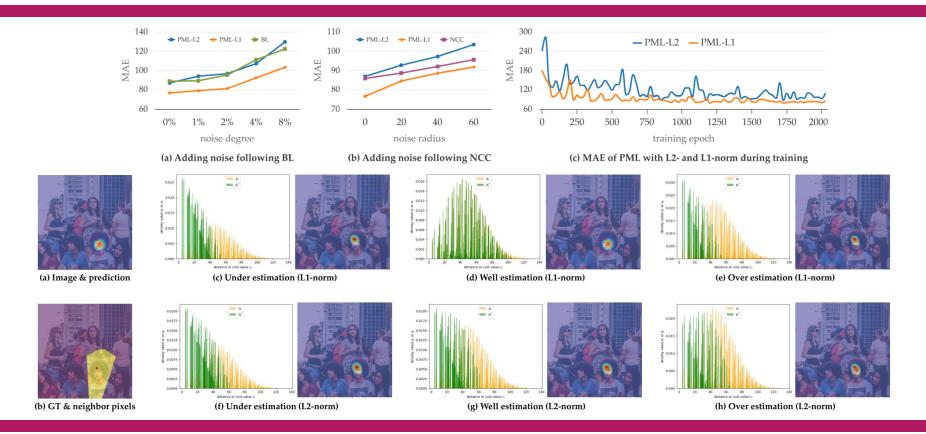
Figure 7: The performance difference of PML when handling sparse and dense crowds.

	F1-meas.	Prec.	Rec.
RAZNet	0.599	0.666	0.543
GL+LM	0.660	0.800	0.562
GL+OTM	0.683	0.710	0.658
P2PNet	0.729	0.676	0.685
PET	0.742	0.752	0.732
STEERER+LM	0.770	0.814	0.730
PML(VGG-19)+OTM	0.735	0.776	0.698
PML(HRNet)+OTM	0.802	0.809	0.795
PML(HRNet)+LM	0.790	0.803	0.777

Table 3: Localization on NWPU-Crowd.

	MCNN		CSF	RNet	VG	G19	HRNet		
	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	
L2 Loss	186.4	283.6	110.6	190.1	98.7	176.1	92.03	157.49	
BL	190.6	272.3	107.5	184.3	88.8	154.8	85.52	149.55	
NoiseCC	177.4	259.0	96.5	163.3	85.8	150.6	_	-	
DMC	176.1	263.3	103.6	180.6	85.6	148.3	82.07	144.84	
GL	142.8	227.9	92.0	165.7	84.3	147.5	78.37	140.23	
GCFL	_	-	83.0	139.8	80.3	137.6	_	-	
PML (ours)	138.9	215.7	82.1	139.0	77.6	132.8	73.17	127.45	

Table 4: Comparison of loss functions and backbones on UCF-QNRF dataset.



VISAL: Video, Image, and Sound Analysis Lab

Thanks

Wei Lin¹, Jia Wan², and Antoni B. Chan¹

¹Department of Computer Science, City University of Hong Kong ²School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen elonlin24@gmail.com, jiawan1998@gmail.com, abchan@cityu.edu.hk