

SC-OmniGS: Self-Calibrating Omnidirectional Gaussian Splatting

Huajian Huang*1, Yingshu Chen*1, Longwei Li2, Hui Cheng2, Tristan Braud1, Yajie Zhao3, Sai-Kit Yeung1


¹The Hong Kong University of Science and Technology

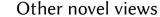
²Sun Yat-sen University

³ICT, University of Southern California

* Equal Contribution

Homepage: https://www.chenyingshu.com/sc-omnigs/

SC-OmniGS


Side view

Center view with training camera visualization

w/o calibration

Robust omnidirectional radiance field reconstruction

is challenging due to:

1. Non-ideal camera model

360° Capturing

Sparse and wide-baseline 360° image dataset [1]

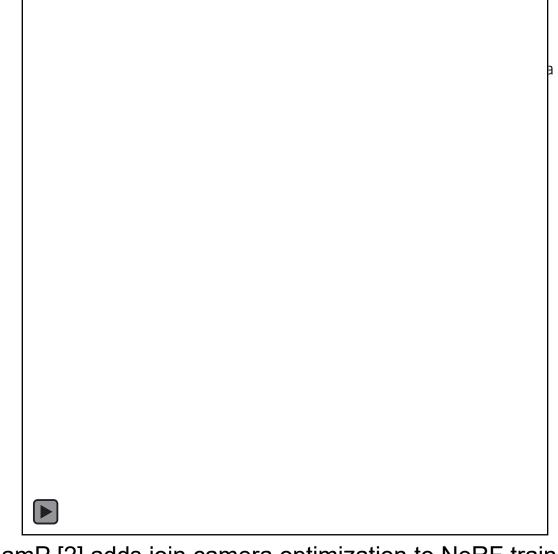
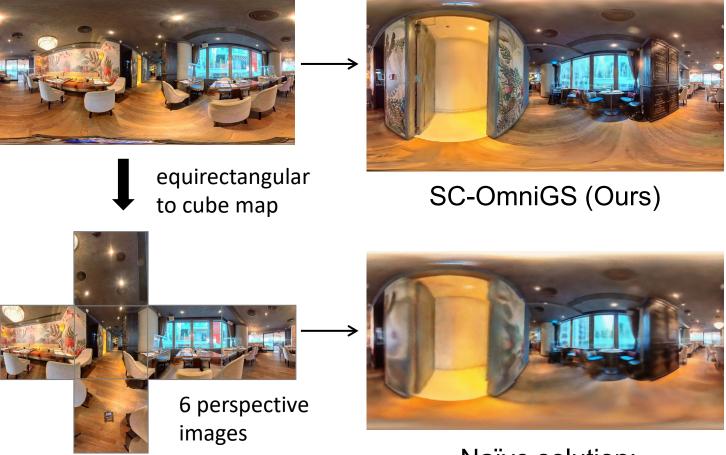


Image distortion

Robust omnidirectional radiance field reconstruction

is challenging due to:

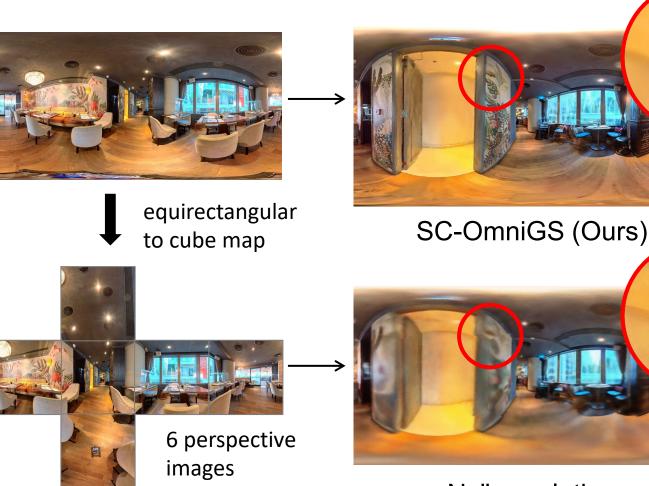

- 1. Non-ideal camera model
- Reliance on camera estimation,
 e.g., structure from motion (SfM)

CamP [2] adds join camera optimization to NeRF training

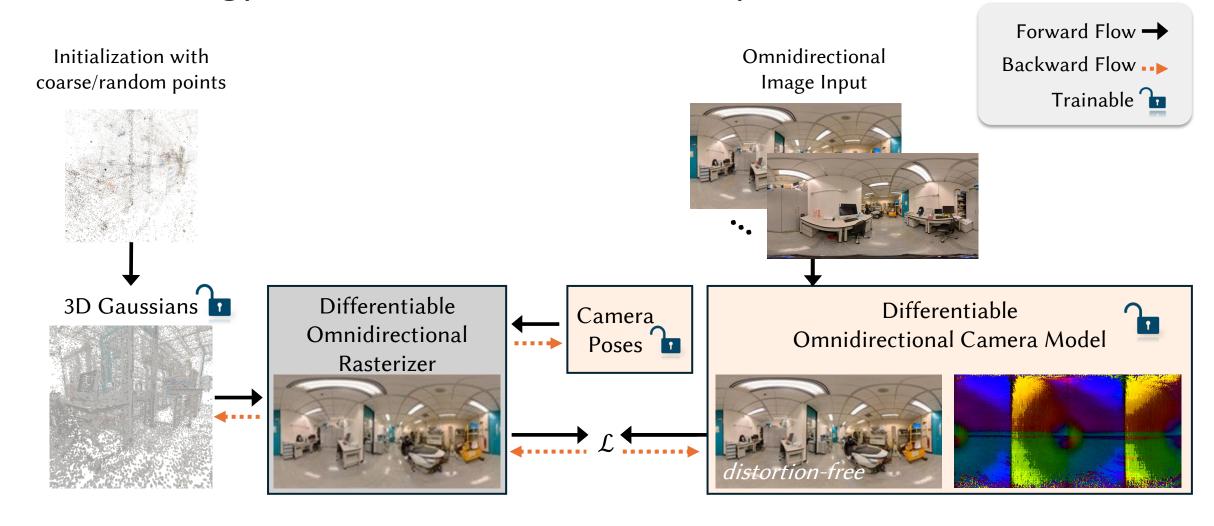
Robust omnidirectional radiance field reconstructionis challenging due to:

- Non-ideal camera model
- Reliance on camera estimation,
 e.g., structure from motion (SfM)

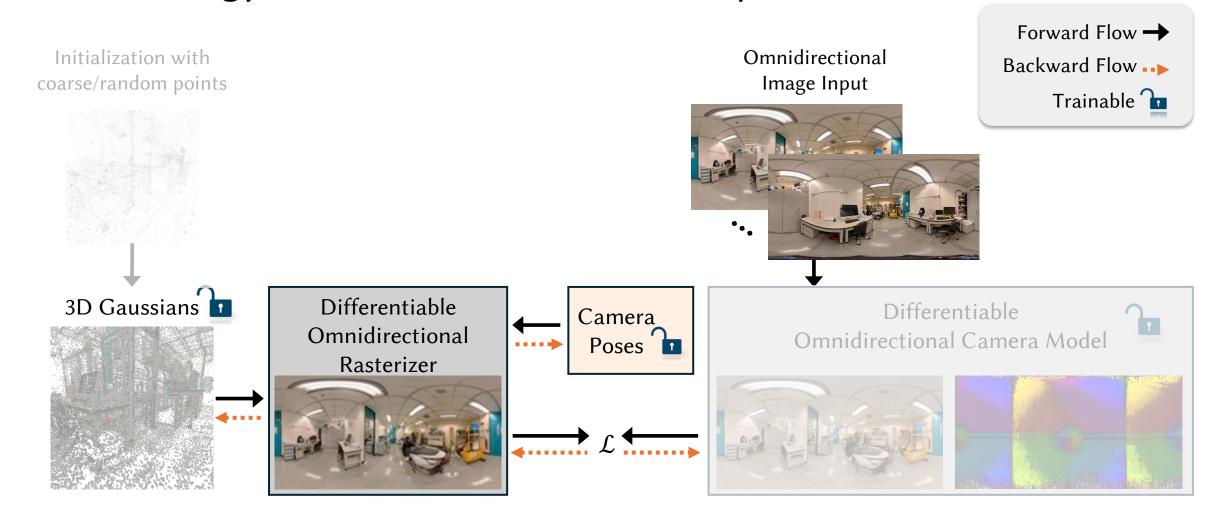
Robust omnidirectional radiance field reconstructionis challenging due to:


- Non-ideal camera model
- Reliance on camera estimation,
 e.g., structure from motion (SfM)

Naïve solution: cube map + calibration [3]


Robust omnidirectional radiance field reconstruction is challenging due to:

- 1. Non-ideal camera model
- Reliance on camera estimation,
 e.g., structure from motion (SfM)



Naïve solution: cube map + calibration [3]

Methodology: Overview of SC-OmniGS Optimization Flow

Methodology: Overview of SC-OmniGS Optimization Flow

Methodology: Gradients of Omnidirectional Camera Pose

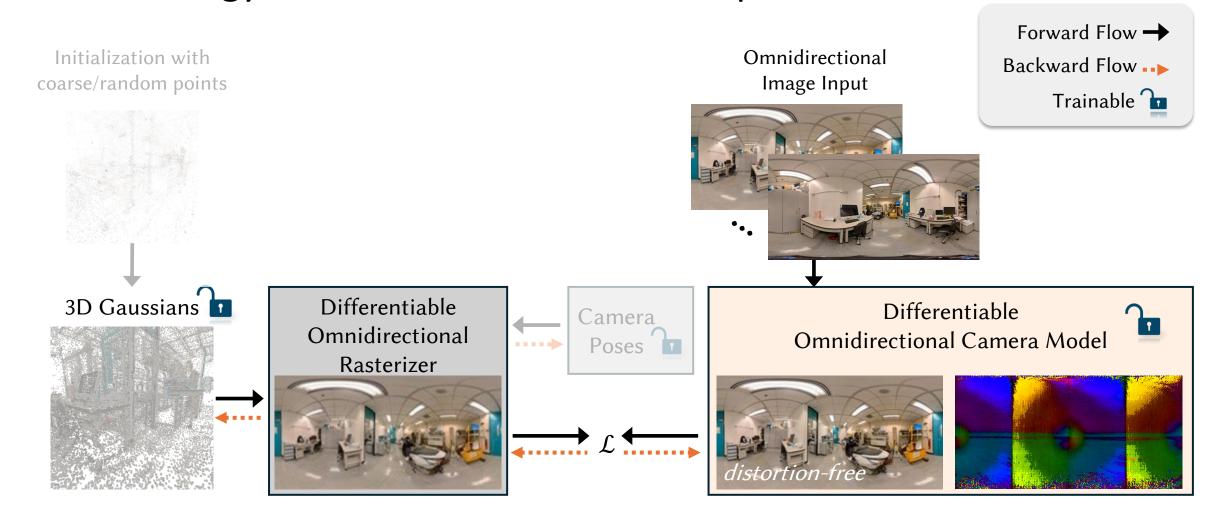
Omnidirectional Gaussian Splatting (OmniGS)[4]

• Equirectangular projection ϕ^o :

$$\mathbf{u} = \phi^{\mathbf{o}}(\mathbf{x}) = \begin{bmatrix} f_x^o \cdot arctan2(x,z) + c_x^o \\ f_y^o \cdot arcsin(y/d) + c_y^o \end{bmatrix} = \begin{bmatrix} \frac{W}{2\pi} \cdot arctan2(x,z) + \frac{W}{2} \\ \frac{H}{\pi} \cdot arcsin(y/d) + \frac{H}{2} \end{bmatrix}$$

• Rendered color of pixel **u** in an omnidirectional image:

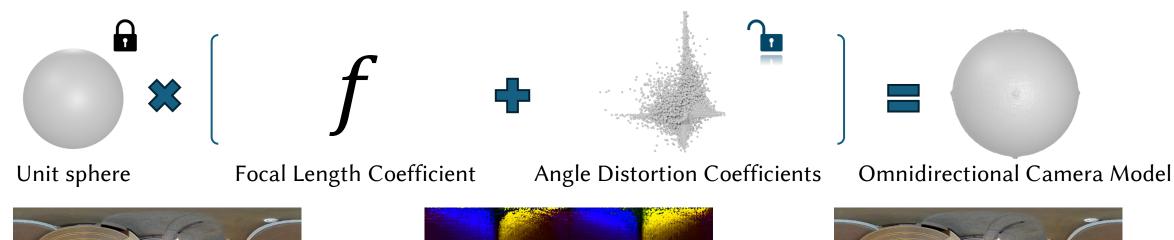
$$\mathbf{C}^{o}(\mathbf{u}) = \sum_{i \in \mathcal{N}} c_{i} \alpha_{i}^{o} \prod_{j=1}^{i-1} (1 - \alpha_{j}^{o}), \quad \alpha_{j}^{o} = \sigma_{j} \cdot \mathbf{r}_{2D}^{o}(\mathbf{u})$$


Gradients of camera pose **T**:

Part 1:
$$\frac{\partial c}{\partial \mathbf{T}'} = \frac{\partial c}{\partial dir} \cdot \frac{\partial dir}{\partial \mathbf{T}'} = \frac{\partial c}{\partial dir} \cdot \left[\frac{\partial dir}{\partial \mathbf{R}} \cdot \frac{\partial \mathbf{R}}{\partial \mathbf{q}} \cdot \frac{\partial dir}{\partial \mathbf{t}} \right]$$

Part 2:
$$\frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{T}'} = \begin{bmatrix} \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{u}_{i}} \cdot \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{T}'} & \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{J}_{i}^{o}} \cdot \frac{\partial \mathbf{J}_{i}^{o}}{\partial \mathbf{T}'} & \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{R}} \cdot \frac{\partial \mathbf{R}}{\partial \mathbf{T}'} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{u}_{i}} \cdot \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{i}}, & \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{J}_{i}^{o}} \cdot \frac{\partial \mathbf{J}_{i}^{o}}{\partial \mathbf{x}_{i}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial \mathbf{x}_{i}}{\partial \mathbf{R}} \cdot \frac{\partial \mathbf{R}}{\partial \mathbf{q}}, & \frac{\partial \mathbf{x}_{i}}{\partial \mathbf{t}} \end{bmatrix} + \frac{\partial \mathbf{r}_{2D}^{o}}{\partial \mathbf{R}} \cdot \frac{\partial \mathbf{R}}{\partial \mathbf{q}}$$

Methodology: Overview of SC-OmniGS Optimization Flow


Methodology: Differentiable Omnidirectional Camera Model

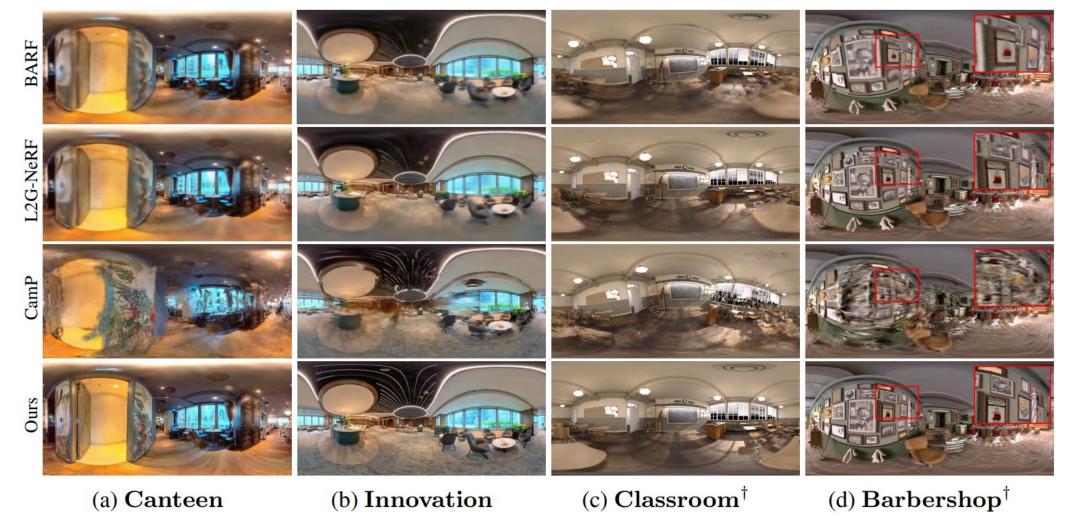
• The **generic** omnidirectional camera model Θ is defined as:

$$\Theta \coloneqq S \cdot f_t + S \odot D.$$

 $S \in \mathbb{R}^{H \times W \times 3}$ is a spherical grid; angle distortion coefficients $D \in \mathbb{R}^{H \times W \times 3}$ are initialized to zeros; for simplicity, we fix focal length coefficient f_t to 1.

Output Image

Distortion Pattern


Input Image

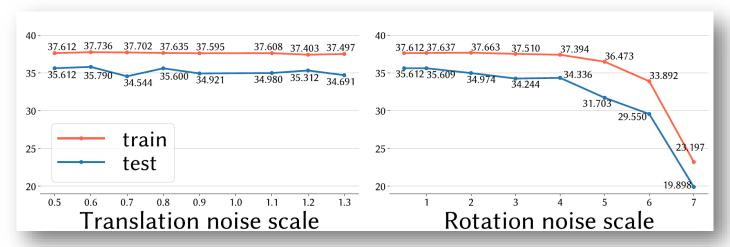
Result Comparisons

Quantitative comparisons on real-world dataset 360Roam. "Perturb" indicates perturbed camera poses as inputs, "train" and "test" indicate training and test views, respectively. We mark the best two results with **first** and **second**.

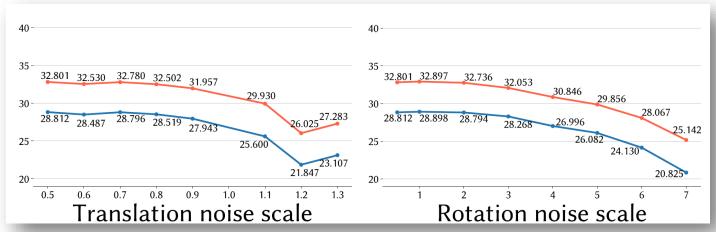
	On	Perturb	train				test	Input images	
Non-calibration methods	360Roam		PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	Input images
	3D-GS [20]	×	23.943	0.744	0.223	20.791	0.684	0.261	Perspective images
	OmniGS [22]	×	28.517	0.861	0.137	24.212	0.768	0.176	360-degree
	OmniGS [22]	√	22.111	0.705	0.334	15.619	0.455	0.489	images
Calibration Nethods	BARF [23]	\checkmark	21.699	0.594	0.465	20.200	0.572	0.481	Daman a eth ce
	L2G-NeRF [8]	\checkmark	21.797	0.598	0.460	20.507	0.576	0.473	Perspective images
	CamP [28]	\checkmark	24.592	0.735	0.264	14.253	0.438	0.573	J Illiages
	SC-OmniGS (Ours)	✓	29.232	0.872	0.147	24.910	0.790	0.188	360-degree images

Result Comparisons

Qualitative comparisons of 360-degree novel views among calibration methods. Our results outperform in both rendering quality and camera accuracy. † indicates training from scratch without camera priors.

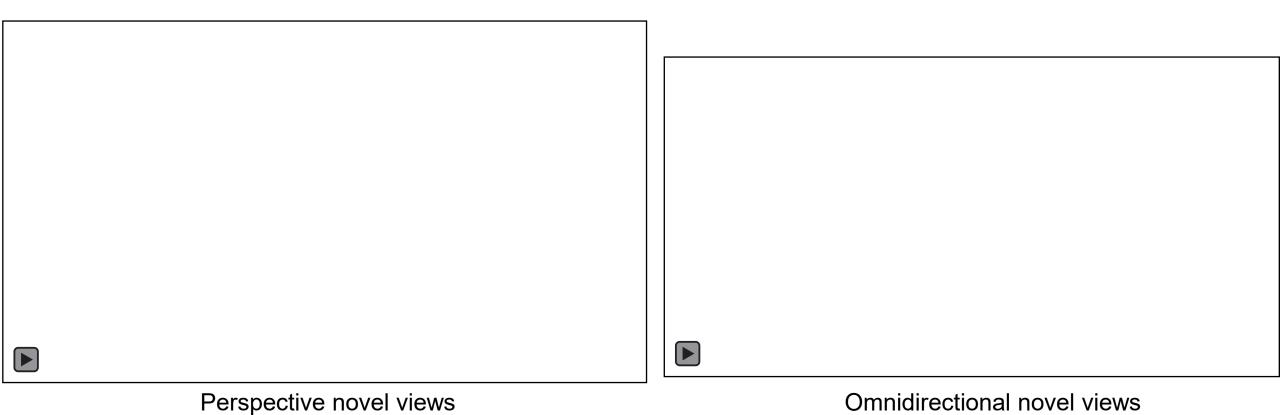

Ablation Study

Ablation study on real scene **Center** of 360Roam, in terms of the optimization of camera model, camera pose, or both. "Perturb" indicates perturbed camera poses, "train" and "test" indicate training and test views, respectively. We mark the best two results with **first** and **second**.


	w/o Perturb						w/ Perturb						
Calibration	train			test			train			test			
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM↑	LPIPS ↓	
none	28.728	0.848	0.170	24.264	0.763	0.213	22.740	0.717	0.372	15.597	0.510	0.553	
+camera model	30.230	0.877	0.153	25.123	0.795	0.195	22.743	0.730	0.408	15.702	0.543	0.568	
+pose	28.334	0.837	0.191	24.906	0.781	0.224	28.130	0.834	0.198	24.739	0.777	0.233	
+camera model+pose	30.035	0.872	0.169	25.802	0.813	0.203	29.706	0.867	0.177	25.304	0.799	0.220	

360-degree real-scene data: Imperfect camera model exhibits distortion

(a) Synthetic scene



Robustness with different level camera perturbations (PSNR[↑]).

Ablation Study – real-time rendering comparisons

16

Thank You