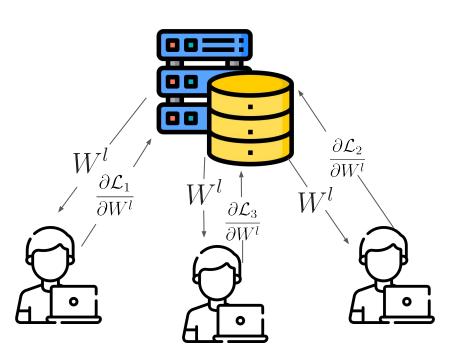
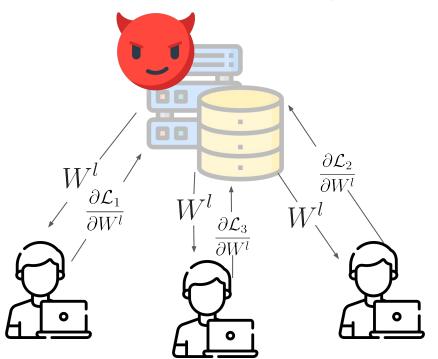
GRAIN: Exact Graph Reconstruction from Gradients



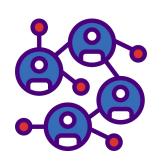


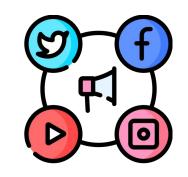
Federated Learning and Gradient Inversion

Federated learning enables training a model across multiple clients without sharing their raw data with a central server; instead, they only share gradient updates.

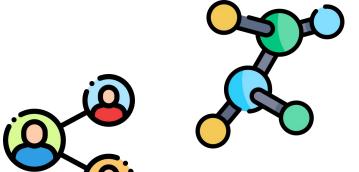
Federated Learning and Gradient Inversion

Federated learning enables training a model across multiple clients without sharing their raw data with a central server; instead, they only share gradient updates.

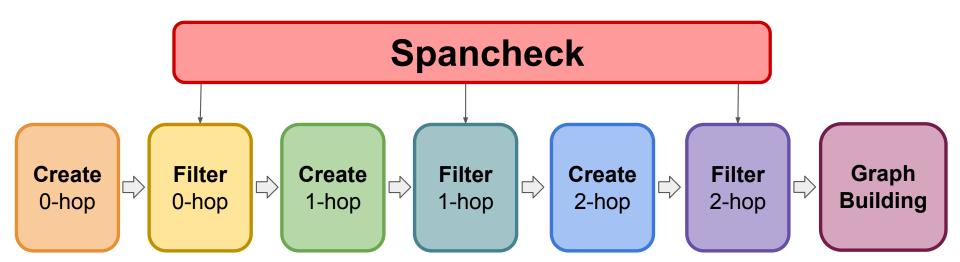

However, **Gradient Inversion Attacks** have revealed privacy risks in Federated Learning, as client data can sometimes be reconstructed from the shared gradient updates.


Spancheck filtering of inputs of linear layers

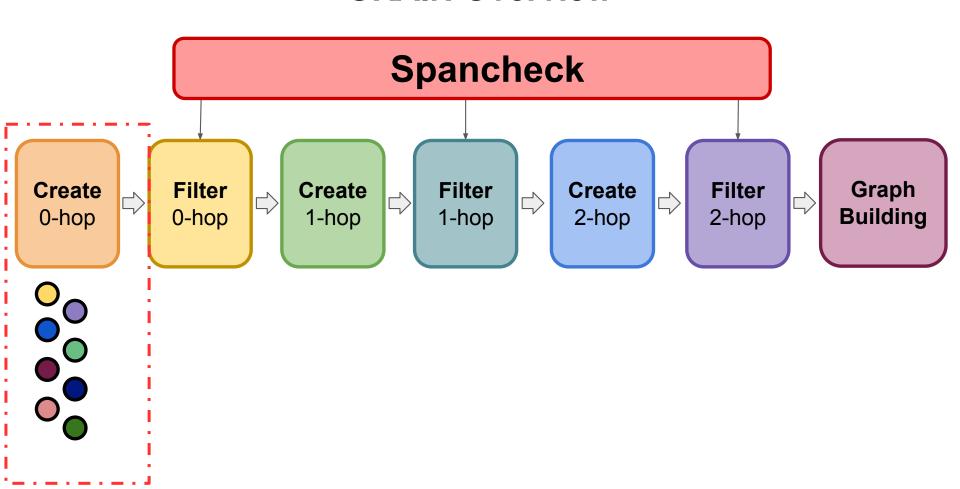
$$\mathbf{Y} = \mathbf{X} \mathbf{W}$$
 $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \mathbf{X}^T \frac{\partial \mathcal{L}}{\partial \mathbf{Y}}$


[1] Petrov et. al. in "DAGER: Exact Gradient inversion for Large Language Models"

Graph Neural Networks in Federated Learning

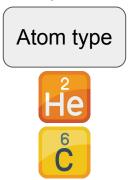


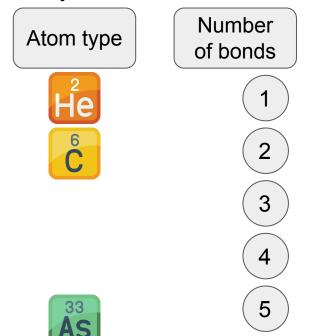
Graph Neural Networks allow for models to be trained on graph data, such as molecules or social and citation networks.

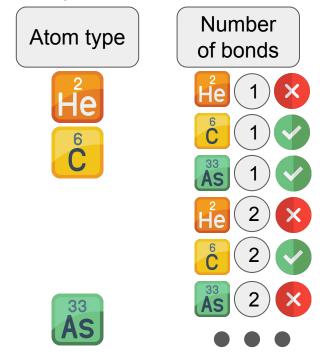


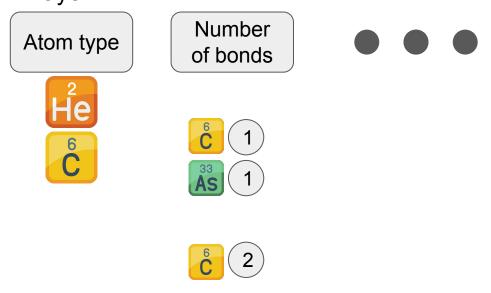
$$X^{l+1} = \text{ReLU}(A^l X^l W^l)$$

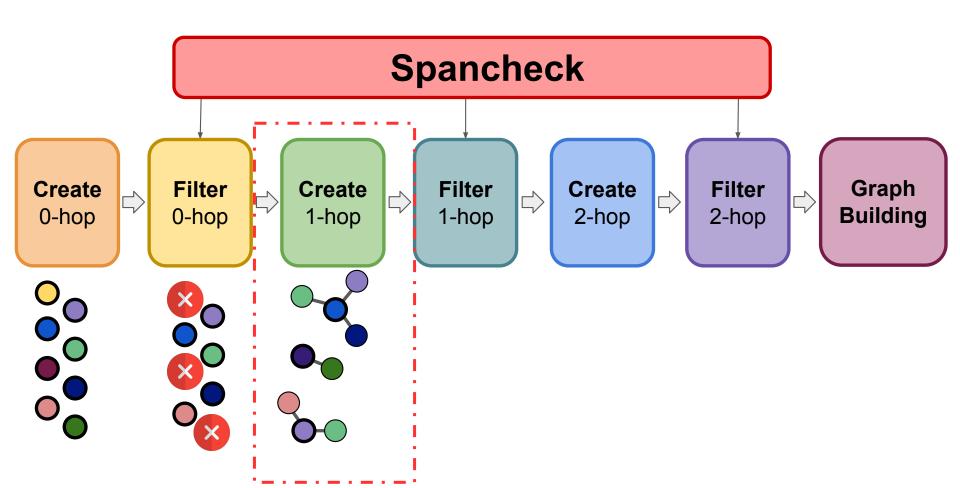
GRAIN Overview

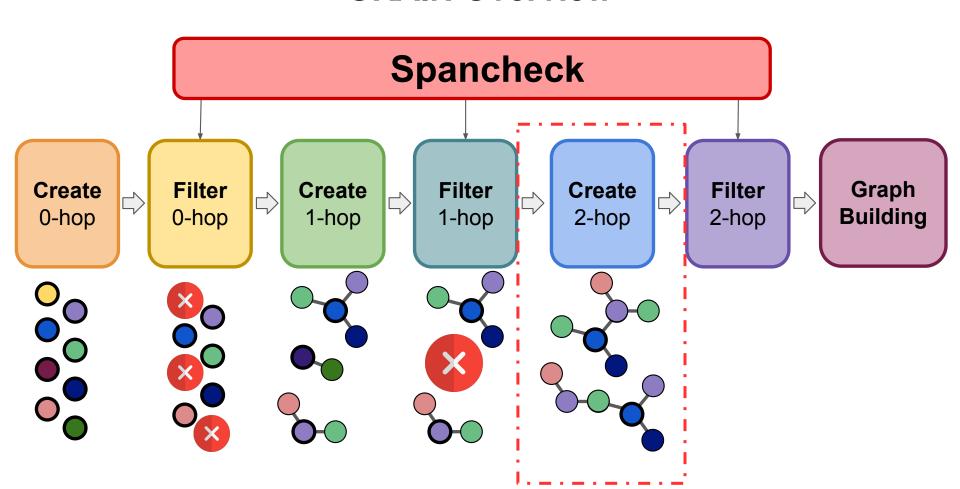

GRAIN Overview


GRAIN Overview Spancheck Filter Filter Filter Graph Create Create Create 0-hop 1-hop 2-hop **Building** 0-hop 1-hop 2-hop

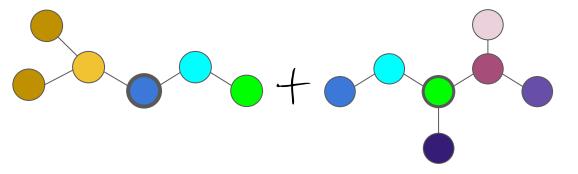






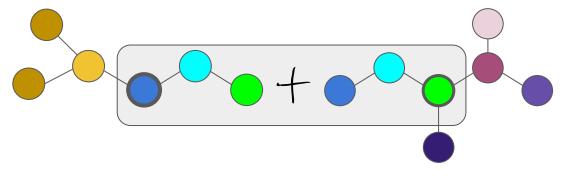


GRAIN Overview

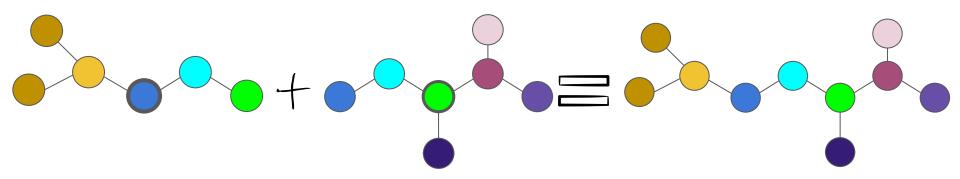


GRAIN Overview Spancheck Filter Filter Filter Graph Create Create Create 2-hop 0-hop 1-hop **Building** 0-hop 1-hop 2-hop

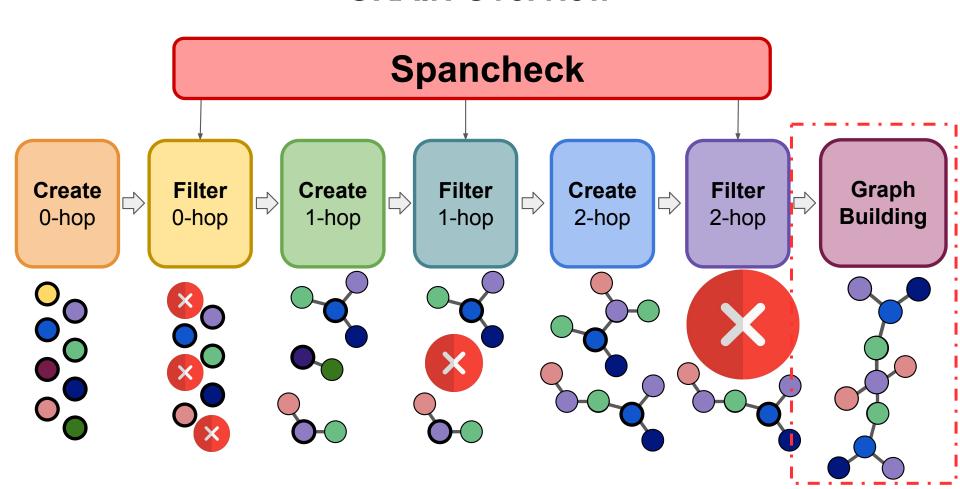
GRAIN Overview

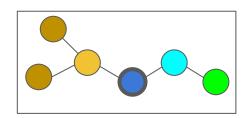


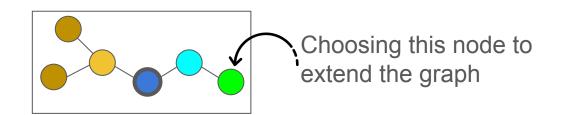
Building Algorithm - Graph gluing

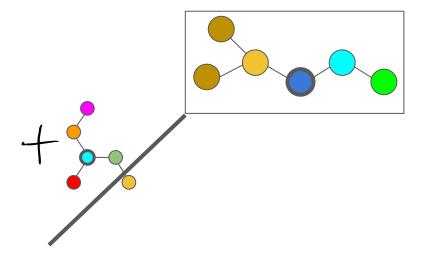

Building Algorithm - Graph gluing

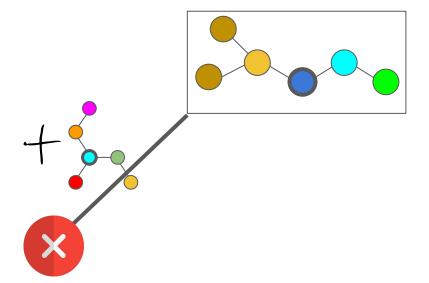
Gluing building blocks into larger graphs

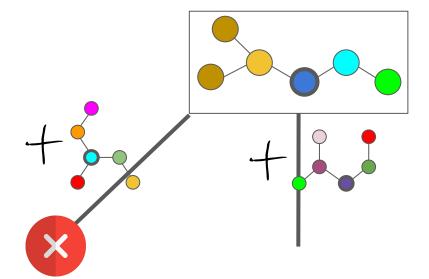

Building Algorithm - Graph gluing

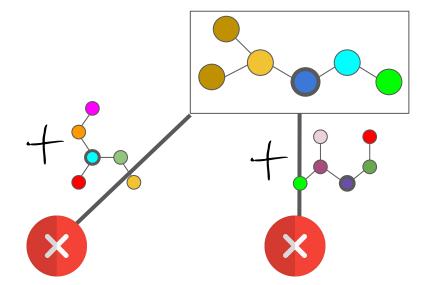

Gluing building blocks into larger graphs

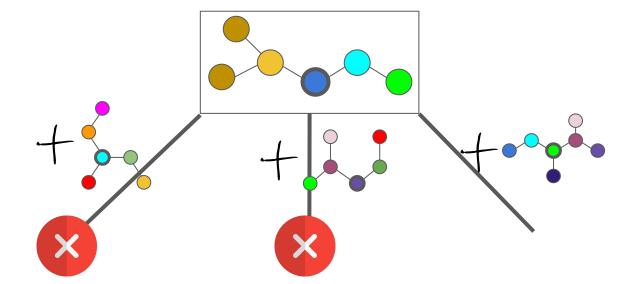


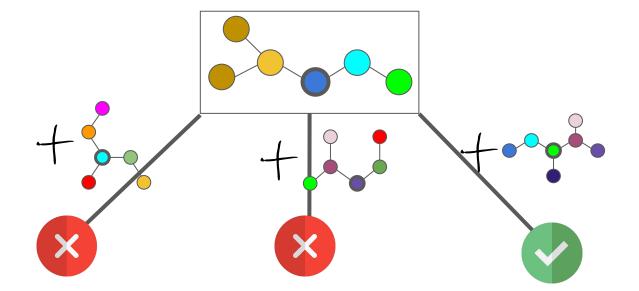

GRAIN Overview Spancheck Filter Graph **Filter Filter** Create Create Create 0-hop 0-hop 2-hop **Building** 1-hop 1-hop 2-hop

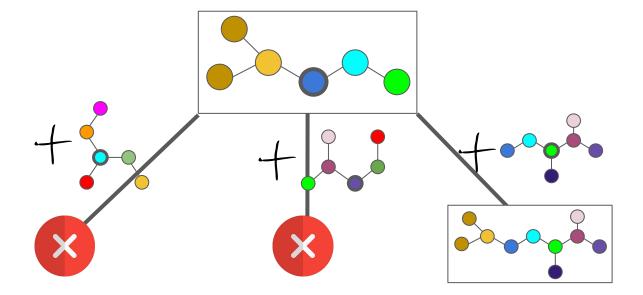

GRAIN Overview

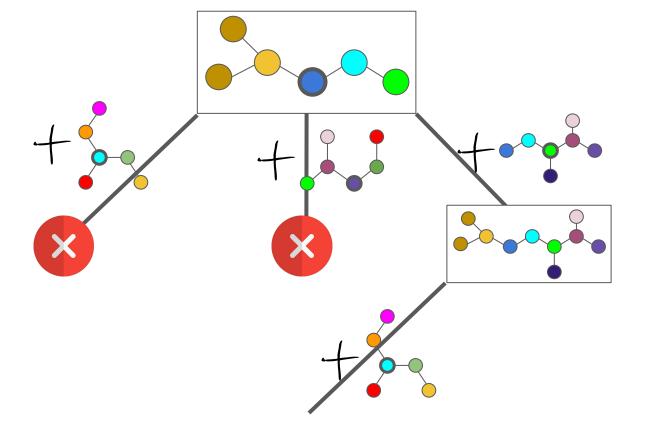


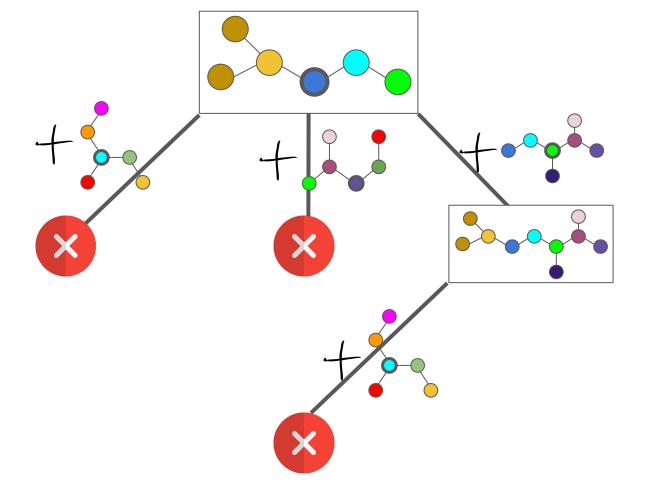


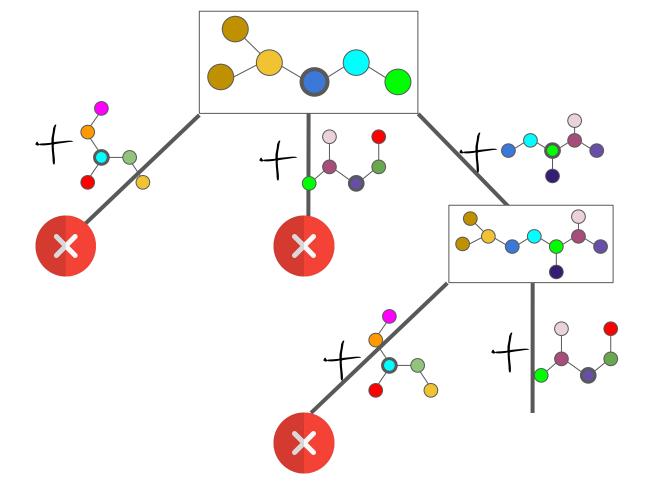


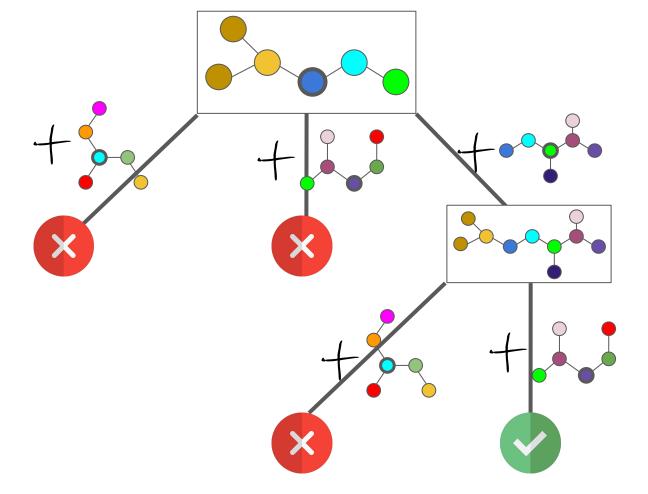


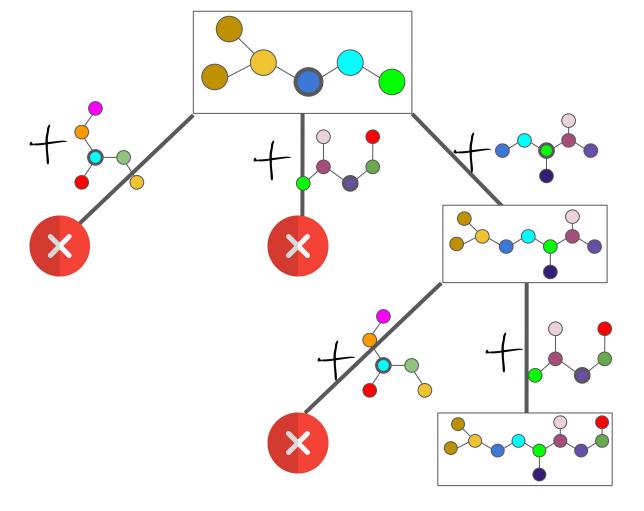












Evaluation - GCNs vs GATs

Baselines: DLG [1] and TabLeak [2] and the same with the adjacency matrix given (+A)

		GCN				GAT					
		GSM-0	GSM-1	GSM-2	FULL	Time [h]	GSM-0	GSM-1	GSM-2	FULL	Time [h]
Tox21	GRAIN	$86.9^{+4.2}_{-5.7}$	$83.9^{+5.2}_{-6.9}$	$82.6_{-7.4}^{+5.7}$	$\textbf{68.0} \pm \textbf{1.7}$	14.3	$92.9^{+3.8}_{-5.8}$	$90.7^{+5.0}_{-7.1}$	$89.9^{+5.8}_{-7.2}$	$\textbf{75.0} \pm \textbf{1.8}$	10.8
	DLG	$31.8^{+4.5}_{-4.3}$	$20.3_{-4.8}^{+5.5}$	$22.8^{+6.6}_{-5.6}$	1.0 ± 0.2	3.3	96.0 ± 0.32	$9.3^{+4.4}_{-4.9}$	$6.5^{+3.9}_{-4.1}$	2.0 ± 0.3	4.2
	DLG + A	$54.7^{+3.9}_{-4.2}$	$60.1^{+4.6}_{-5.2}$	$76.7^{+3.6}_{-4.8}$	1.0 ± 0.2	3.1	96.5 ± 0.34	$69.7^{+4.1}_{-4.2}$	$81.3^{+3.4}_{-3.6}$	2.0 ± 0.3	4.5
	TabLeak	$25.1^{+5.1}_{-4.3}$	$12.4^{+5.5}_{-4.3}$	$10.8^{+5.6}_{-3.9}$	1.0 ± 0.2	13.1	$73.7^{+2.6}_{-2.0}$	$7.2^{+5.2}_{-4.9}$	10.0 ± 4.8	1.0 ± 0.2	6.0
	TabLeak $+A$	$55.6^{+3.9}_{-3.9}$	$57.7^{+4.1}_{-4.6}$	$73.8_{-3.5}^{+2.8}$	1.0 ± 0.2	12.3	$75.1_{-1.9}^{+2.5}$	$74.9_{-1.9}^{+2.1}$	$84.2^{+1.5}_{-1.3}$	1.0 ± 0.2	6.0

- [1] Zhu et. al. in "Deep Leakage from Gradients"
- [2] Vero et. al. in "TabLeak: Tabular Data Leakage in Federated Learning"

Evaluation – GRAIN on different domains

	S)				GAT		
			GSM-0	GSM-1	GSM-2	FULL	Min/Rec
		GRAIN	$79.3_{-6.3}^{+4.7}$	$69.1^{+6.1}_{-6.4}$	$69.6^{+6.2}_{-6.0}$	$\textbf{61.0} \pm \textbf{1.6}$	0.8
Citation		DLG	$67.7^{+3.9}_{-3.7}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	0.0 ± 0.0	31.0
Network	CiteSeer	DLG + A	$67.7^{+4.0}_{-3.7}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	0.0 ± 0.0	27.7
NO COVOTIC		TabLeak	$67.7^{+3.9}_{-3.8}$	$0.0^{+0.0}_{-0.0}$	$0.0_{-0.0}^{+0.0}$	0.0 ± 0.0	153.0
		TabLeak + A	$67.7_{-3.7}^{+4.0}$	$0.0_{-0.0}^{+0.0}$	$0.0^{+0.0}_{-0.0}$	0.0 ± 0.0	148.7
		GRAIN	$97.2^{+1.6}_{-1.9}$	$93.5_{-4.2}^{+3.4}$	$96.3^{+1.9}_{-2.3}$	$\textbf{79.0} \pm \textbf{1.8}$	0.2
Social		DLG	$44.7^{+2.3}_{-2.3}$	$2.2^{+3.1}_{-2.2}$	$0.0^{+0.0}_{-0.0}$	0.0 ± 0.0	26.3
Network	Pokec	DLG + A	$57.4_{-3.9}^{+3.7}$	$69.5^{+3.6}_{-4.0}$	$88.6^{+2.0}_{-2.1}$	0.0 ± 0.0	21.6
		TabLeak	$50.8_{-8.9}^{+12.4}$	$13.9^{+13.5}_{-12.3}$	$7.9^{+11.9}_{-7.9}$	0.0 ± 0.0	204.5
		TabLeak $+A$	$52.6_{-3.3}^{+3.3}$	$68.1_{-3.9}^{+4.1}$	$82.7_{-4.9}^{+4.0}$	0.0 ± 0.0	254.5
Chaminal		GRAIN	$92.9_{-5.8}^{+3.8}$	$90.7^{+5.0}_{-7.1}$	$89.9^{+5.8}_{-7.2}$	$\textbf{75.0} \pm \textbf{1.8}$	10.8
Chemical		DLG	96.0 ± 0.32	$9.3^{+4.4}_{-4.9}$	$6.5^{+3.9}_{-4.1}$	2.0 ± 0.3	4.2
dataset	Tox21	DLG + A	96.5 ± 0.34	$69.7^{+4.1}_{-4.2}$	$81.3^{+3.4}_{-3.6}$	2.0 ± 0.3	4.5
		TabLeak	$73.7^{+2.6}_{-2.0}$	$7.2^{+5.2}_{-4.9}$	10.0 ± 4.8	1.0 ± 0.2	6.0
		TabLeak $+A$	$75.1_{-1.9}^{+2.5}$	$74.9_{-1.9}^{+2.1}$	$84.2^{+1.5}_{-1.3}$	1.0 ± 0.2	6.0

Evaluation - Model Width and Depth

		GSM-0	GSM-1	GSM-2	FULL
L = 2, $d' = 300$ (default)	GRAIN	$86.9^{+4.2}_{-5.7}$	$83.9^{+5.2}_{-6.9}$	$82.6^{+5.7}_{-7.4}$	68.0 ± 1.7
	DLG	$31.8^{+4.5}_{-4.3}$	$20.3^{+5.5}_{-4.8}$	$22.8^{+6.6}_{-5.6}$	1.0 ± 0.2
	DLG + A	$54.7^{+3.9}_{-4.2}$	$60.1^{+4.6}_{-5.2}$	$76.7^{+3.6}_{-4.8}$	1.0 ± 0.2
	TabLeak	$25.1^{+5.1}_{-4.3}$	$12.4_{-4.3}^{+5.5}$	$10.8^{+5.6}_{-3.9}$	1.0 ± 0.2
	TabLeak + A	$55.6^{+3.9}_{-3.9}$	$57.7^{+4.1}_{-4.6}$	$73.8_{-3.5}^{+2.8}$	1.0 ± 0.2
	GRAIN	$82.5_{-7.7}^{+5.7}$	$80.7^{+6.3}_{-7.7}$	$80.4_{-7.8}^{+6.2}$	63.0 ± 1.6
L=3,	DLG	$20.3^{+4.3}_{-3.4}$	$7.8^{+5.1}_{-3.3}$	$8.2^{+5.3}_{-3.4}$	1.0 ± 0.2
L = 3, d' = 300	DLG + A	$43.0^{+3.7}_{-3.6}$	$48.0_{-4.5}^{+4.3}$	$66.0^{+3.7}_{-4.6}$	1.0 ± 0.2
ı — 500	TabLeak	$16.5^{+3.8}_{-2.9}$	$8.8^{+4.4}_{-3.1}$	$8.0^{+4.3}_{-3.0}$	1.0 ± 0.2
	TabLeak + A	$47.5_{-4.2}^{+4.0}$	$48.1_{-5.0}^{+4.8}$	$62.9_{-4.4}^{+4.3}$	1.0 ± 0.2
	GRAIN	$84.6^{+4.6}_{-6.4}$	$81.4^{+5.8}_{-6.9}$	$80.5^{+5.9}_{-7.2}$	62.0 ± 1.6
I = 0	DLG	$30.8^{+4.5}_{-4.1}$	$18.9^{+5.8}_{-4.9}$	$22.2_{-5.4}^{+6.7}$	1.0 ± 0.2
L = 2, $d' = 200$	DLG + A	$50.3^{+4.2}_{-4.2}$	$53.4^{+5.3}_{-5.9}$	$68.7^{+4.9}_{-6.1}$	3.0 ± 0.4
	TabLeak	$22.1_{-3.7}^{+4.8}$	$10.3^{+5.3}_{-3.6}$	$8.9^{+5.5}_{-3.6}$	1.0 ± 0.2
	${\it TabLeak} + A$	$55.0^{+4.8}_{-5.0}$	$62.1_{-5.9}^{+4.9}$	$76.7^{+3.6}_{-4.7}$	1.0 ± 0.2

Evaluation - Miscellaneous Settings

9				
	GSM-0	GSM-1	GSM-2	FULL
Default	$86.9^{+4.2}_{-5.7}$	$83.9^{+5.2}_{-6.9}$	$82.6_{-7.4}^{+5.7}$	$\textbf{68.0} \pm \textbf{1.7}$
$\sigma = \text{GELU}$	$82.0_{-6.7}^{+5.3}$	$79.1_{-7.4}^{+6.0}$	$78.4_{-8.0}^{+6.2}$	61.0 ± 1.6
Pre-trained	$73.5^{+6.4}_{-7.4}$	$70.0^{+7.3}_{-7.7}$	$68.6^{+7.6}_{-8.3}$	49.0 ± 1.4
Node Class.	$88.0^{+3.8}_{-5.4}$	$85.5_{-6.5}^{+4.6}$	$84.9^{+5.0}_{-6.6}$	66.0 ± 1.6

Further details can be found in the paper.

OpenReview Code Homepage