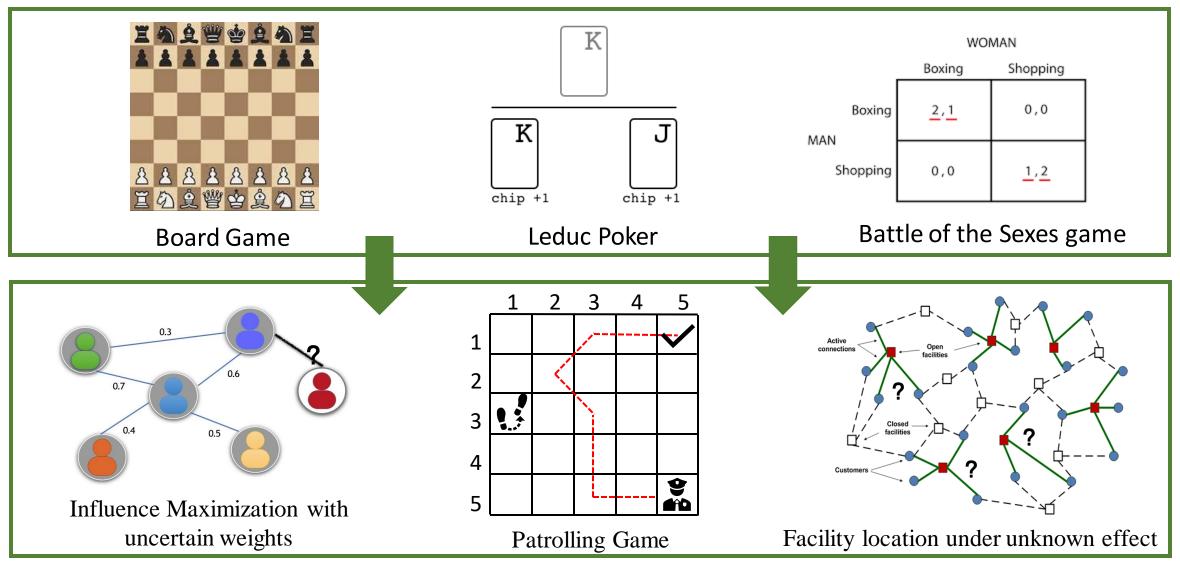
Can Reinforcement Learning Solve Asymmetric Combinatorial-Continuous Zero-Sum Games?

ICLR 2025

Yuheng Li, Panpan Wang, Haipeng Chen

Data-Driven Decision Intelligence Lab College of William & Mary

Motivation

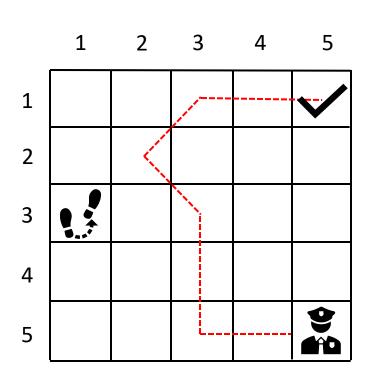


What's the Asymmetric Combinatorial-Continuous zero-Sum (ACCES) Game?

- Player 1: Combinatorial strategy space
- Player 2: **Infinite and compact** strategy space with a continuous utility function

Ep. Patrolling Game,

- Player 1: defender, choosing a feasible constrained route to patrol.
- Player 2: attacker, deciding the **attack probability** for targets.
- Utility function: the expectation of successfully protected target values

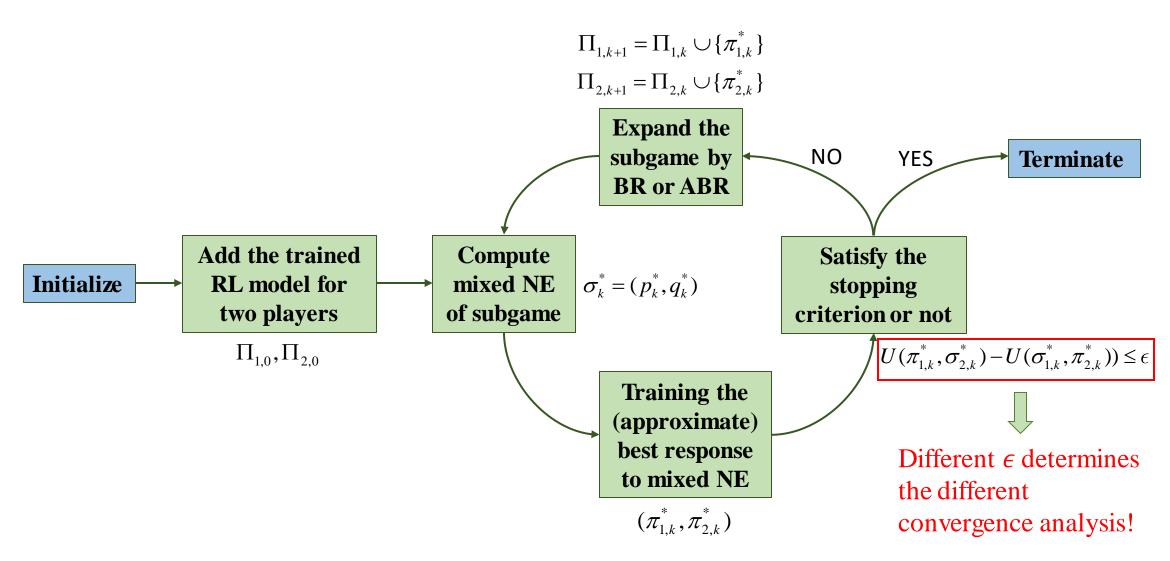


Patrolling Game

Contributions

- 1. Summarize and define the ACCES game
- 2. The existence of mixed NE in ACCES games
- 3. CCDO & CCDO-RL Framework
 - Novel Convergence Guarantee
 - First practical algorithm to solve ACCES games
- 4. Empirical evaluations on three instances

CCDO & CCDO-RL Framework



CCDO & CCDO-RL Convergence Analysis

• Existence of NE (Theorem 1):

The ACCES game has a mixed strategy Nash Equilibrium.

- CCDO Convergence Analysis (Theorem 2):
 - 1. When the stopping criterion $\epsilon = 0$, CCDO possibly iterates in an infinite number of iterations. However, every weakly convergent subsequence in the **subgame equilibrium** sequence $\{p_k^*, q_k^*\}$ converges to the equilibrium of the whole game.
 - 2. When the stopping criterion $\epsilon > 0$, CCDO converges to an ϵ -equilibrium in a finite number of epochs.

CCDO & CCDO-RL Convergence Analysis

• CCDO-RL Convergence Analysis (Theorem 3):

- 1. When the stopping criterion $\epsilon = 0$, if the approximate response oracle for Player 2 has a uniform lower bound for every mixed strategy, then CCDO-RL must converge to an $(\epsilon + \epsilon_1 + \epsilon_2)$ -equilibrium in a finite iterations.
- 2. When the stopping criterion $\epsilon = 0$ and CCDO-RL iterates **infinite** rounds, every weakly convergent subsequence converges to an ϵ_1 equilibrium.
- 3. When the stopping criterion $\epsilon > 0$, CCDO-RL converges to an $(\epsilon + \epsilon_1 + \epsilon_2)$ -equilibrium in a finite number of epochs.

 ϵ_1 and ϵ_2 are the approximate error bound of approximate best responses for Player 1 and 2 respectively.

Experiments

In three instances under two types of adversary,
CCDO-RL and stochastic adversary, CCDO-RL has

- Better average reward on seen graphs.
- Greater generalizability on unseen graphs.

Table 1: Average reward against CCDO-RL's adversary (on seen graphs)

method	ACSP (Mean±Std)		ACVRP (Mean±Std)		PG (Mean±Std)	
	20 nodes	50 nodes	20 nodes	50 nodes	20 nodes	50 nodes
Heuristic	6.13 ± 1.20	7.55 ± 1.42	7.65 ± 1.23	13.38 ± 1.70	2.64 ± 1.03	4.53 ± 1.84
RL against Stoc	3.50 ± 0.47	4.55 ± 0.62	7.55 ± 1.16	13.90 + 1.63	2.71 ± 0.90	4.80 ± 2.18
CCDO-RL	3.25 ± 0.42	4.31 ± 0.51	7.42 ±1.21	13.28 ± 1.52	$2.75 \!\pm\! 0.87$	5.01 ±1.91

Table 2: Generalizability against CCDO-RL's adversary (on unseen graphs)

method	ACSP (Mean±Std)		ACVRP (Mean±Std)		PG (Mean±Std)	
	20 nodes	50 nodes	20 nodes	50 nodes	20 nodes	50 nodes
Heuristic	6.20 ± 1.33	7.60 ± 1.37	7.64 ± 1.30	13.27 ± 1.87	2.43 ± 0.98	4.19±1.69
RL against Stoc	3.56 ± 0.37	4.57 ± 0.58	7.67 ± 1.30	13.85 ± 1.53	2.50 ± 0.95	4.26 ± 2.17
CCDO-RL	3.31 ± 0.35	4.39 ± 0.52	7.55 ±1.28	13.15 ±1.59	2.56 ±0.92	4.70 ±1.94

¹ For the average reward of ACSP and ACVRP, smaller is better while for that of PG larger is better.

